"Theory-Inspired Optimizations for Privacy Preserving Distributed OLAP " by Alfredo Cuzzocrea and Elisa Bertino
 

Theory-Inspired Optimizations for Privacy Preserving Distributed OLAP Algorithms

Abstract

Actually, a lot of attention focusing on the problem of computing privacy-preserving OLAP cubes effectively and efficiently arises. State-of-theart proposals rather focus on an algorithmic vision of the problem, and neglect relevant theoretical aspects the investigated problem introduces naturally. In order to fulfill this gap, in this paper we provide algorithms for supporting privacy- preserving OLAP in distributed environments, based on the well-known CUR matrix decomposition method, enriched by some relevant theory-inspired optimizations that look at the intrinsic nature of the investigated problem in order to gain significant benefits, at both the (privacy-preserving) cube computation level and the (privacy-preserving) cube delivery level.

Date of this Version

2014

DOI

10.1007/978-3-319-07617-1_39

Plum Print visual indicator of research metrics
PlumX Metrics
  • Usage
    • Downloads: 98
    • Abstract Views: 1
  • Captures
    • Readers: 7
see details

Share

COinS