Purdue e-Pubs - Purdue Workshop on Nonproliferation: Technology and Approaches: Initial Active Interrogation Experiments at The University of Michigan Linear Accelerator Laboratory
 

Abstract

To support the mission of the Countering Weapons of Mass Destruction Office of the Department of Homeland Security, the Detection for Nuclear Nonproliferation group is researching active interrogation techniques and the development of new detection algorithms for fast neutron spectroscopy. The Countering Weapons of Mass Destruction Officehas loaned us a Varian M9 linear accelerator (linac), helium-3 detectors, boron-coated straw detectors, and perfluorocarbondetectors as part of this research, providing a variety of tools to conduct our experiments.In the summer of 2018, a thorough licensing process concluded, and preliminary experiments commenced. Later in the year, the facility was approved to possess and irradiate depleted uranium, which enabledus to conduct active interrogation experiments.In the fall of 2018, we conducted our first active interrogation measurements using the linac facility. The measurements used the linac to irradiate depleted uranium,lead, and tungsten targets to induce photonuclear reactions to emit fast neutrons. The neutrons were then detected using a simple helium-3 detector. Simulations were developed using MCNPX-PoliMi and MCNP 6.1 to validate the measured results. The simulations showed close agreement for depleted uranium but indicated that additional investigation is required for the lead and tungsten data. The facility will be indispensable as the researchprogressesbyproviding a mixed-radiation field consisting of fast neutrons and photons, which is similar to the radiation environment encountered in active interrogation scenarios.Additionally, the facility is involved inresearch related toradiation damage, dosimetry, and radiation-oncology.Future activities will involve characterization of photonuclear properties of various materials, and collaborations with other university researchers.

Share

COinS
 
Mar 1st, 12:00 AM Mar 1st, 12:00 AM

Initial Active Interrogation Experiments at The University of Michigan Linear Accelerator Laboratory

Purdue University

To support the mission of the Countering Weapons of Mass Destruction Office of the Department of Homeland Security, the Detection for Nuclear Nonproliferation group is researching active interrogation techniques and the development of new detection algorithms for fast neutron spectroscopy. The Countering Weapons of Mass Destruction Officehas loaned us a Varian M9 linear accelerator (linac), helium-3 detectors, boron-coated straw detectors, and perfluorocarbondetectors as part of this research, providing a variety of tools to conduct our experiments.In the summer of 2018, a thorough licensing process concluded, and preliminary experiments commenced. Later in the year, the facility was approved to possess and irradiate depleted uranium, which enabledus to conduct active interrogation experiments.In the fall of 2018, we conducted our first active interrogation measurements using the linac facility. The measurements used the linac to irradiate depleted uranium,lead, and tungsten targets to induce photonuclear reactions to emit fast neutrons. The neutrons were then detected using a simple helium-3 detector. Simulations were developed using MCNPX-PoliMi and MCNP 6.1 to validate the measured results. The simulations showed close agreement for depleted uranium but indicated that additional investigation is required for the lead and tungsten data. The facility will be indispensable as the researchprogressesbyproviding a mixed-radiation field consisting of fast neutrons and photons, which is similar to the radiation environment encountered in active interrogation scenarios.Additionally, the facility is involved inresearch related toradiation damage, dosimetry, and radiation-oncology.Future activities will involve characterization of photonuclear properties of various materials, and collaborations with other university researchers.

https://docs.lib.purdue.edu/can/2019/papers/2