Location

West Lafayette, Indiana

Abstract

The integration of STEM with the Arts, commonly referred to as STEAM, recognizes the need for human skill, creativity, and imagination in technological innovations and solutions of real-world technical problems. The STEAM paradigm changes the dominant “chalk and talk” lecture and “closed-ended” problem-solving orientation of traditional engineering pedagogy to a hands-on, studio-based, and open-ended creative learning approach, typical in art education. A growing body of literature has provided evidence of the favorable impact of situating STEAM in K-16 education. The long-term objective of this work is to promote creativity in engineering students by integrating learning methods and environments from the Arts into graduate STEM education. To this end, an integrating engineering, technology and art (ETA) educational model is developed and is currently being tested. This ETA educational model systematically merges technical instruction with studio-based pedagogy. The ETA model consists of three courses, which were piloted in the year 2017. In each course, engineering and art instructors and students collaborated for 15 weeks on design projects. These projects ranged from drones to architectural installations.

Share

COinS
 

Integration of Art Pedagogy in Engineering Graduate Education

West Lafayette, Indiana

The integration of STEM with the Arts, commonly referred to as STEAM, recognizes the need for human skill, creativity, and imagination in technological innovations and solutions of real-world technical problems. The STEAM paradigm changes the dominant “chalk and talk” lecture and “closed-ended” problem-solving orientation of traditional engineering pedagogy to a hands-on, studio-based, and open-ended creative learning approach, typical in art education. A growing body of literature has provided evidence of the favorable impact of situating STEAM in K-16 education. The long-term objective of this work is to promote creativity in engineering students by integrating learning methods and environments from the Arts into graduate STEM education. To this end, an integrating engineering, technology and art (ETA) educational model is developed and is currently being tested. This ETA educational model systematically merges technical instruction with studio-based pedagogy. The ETA model consists of three courses, which were piloted in the year 2017. In each course, engineering and art instructors and students collaborated for 15 weeks on design projects. These projects ranged from drones to architectural installations.