Characterizing Crop-waste Loads For Solid Waste Processing

Abstract

In long-duration, closed human habitats in space that include crop growth, one challenge that is faced while designing a candidate waste processor is the composition of solid-waste loads, which include human waste, packaging and food-processing materials, crop spoilage, and plant residues. In this work, a new modelling tool is developed to characterize crop residues and food wastes based on diet in order to support the design of solid-waste technologies for closed systems. The model predicts amounts of crop residues and food wastes due to food processing, crop harvests, and edible spoilage. To support the design of solid-waste technologies, the generation of crop residues and food wastes was characterized for a 600-day mission to Mars using integrated menu, crop, and waste models. The three sources of plant residues and food waste are identified to be food processors, crop harvests, and edible spoilage. Of these waste streams, the largest generator was crop harvests, especially vines and leaves of sweet potato, which accounted for over 60% of solid waste by mass.

Comments

Presented at International Conference On Environmental Systems, July 2007, Chicago, IL, USA, Session: Biotechnologies

Date of this Version

July 2007

Identifier

ALS-NSCORT:p79

Publisher Identifier:

SAE document number: 2007-01-3187

Publisher

SAE International

ALS NSCORT Project Number

Project 15 - Simulation Based Optimization Approach to Model and Design an Advanced Life Support System

Project Lead

Seza Orcun

Language

English

ALS NSCORT Series

Published Materials

Administrative Contact

Dave Kotterman, dkotter@purdue.edu

Rights

Copyright 2007 SAE International. For additional information please visit the intellectual property section of the publisher's website: http://www.sae.org/about/intelproperty/ or the publisher's home page at: http://www.sae.org

Access

This article is not available through e-pubs. To purchase a copy of this article visit: http://www.sae.org/technical/papers/2007-01-3187

This document is currently not available here.

Share

COinS