Date of Award

Fall 2013

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Technology

First Advisor

Qingyou Han

Committee Chair

Qingyou Han

Committee Member 1

David R. Johnson

Committee Member 2

Xiangyu Zhang

Committee Member 3

Richard M. French

Abstract

Positive effects of ultrasound on crystallization have been known for almost 90 years. Application of ultrasound has been very successful in many industries, most notably in chemistry, creating a new branch of science - sonochemistry. However, ultrasonication has not found wide commercial application in the solidification processing. The reason for that is the complexity of underlying phenomena and the lack of predicting models which correlate processing parameters with the properties of a product. The purpose of this study is to give some contribution toward better understanding of mechanisms that lead to changes in the solidifying microstructure. It has been found that, under experimental conditions used in this work, cavitation-induced nucleation is the major contributor to the grain refinement. Ultrasonication at minimal supercoolings is expected to give maximal grain refinement. Dendrite fragmentation has not shown to be a significant contributor to the grain refinement. Dendrite fragmentation is maximal if done by bubbles that come in contact with the solidifying phase, or that are created there. Alloys/solutions with long solidification interval, or wide mushy zone, are expected to exhibit more dendrite fragmentation. Bubbles are recognized as a crucial feature in ultrasonication. Their size distribution in the liquid phase prior to ultrasonication dictates the cavitation threshold and intensity of cavitation. For the first time, radiation pressure has been recognized as potentially significant factor in grain refinement. In the experimental setup used in this study, acoustic pressure at the main (driving) frequency is not substantial to cause significant fragmentation, and only dendrites close to the sonotrode were fragmented. However, application of ultrasound with frequencies that are several times higher than the current industrial practice could substantially increase dendrite fragmentation. Appearance of fractional harmonics has also been recognized for the first time as potentially influential factor. The amplitude of pressure caused by these vibrations is quite sensible, and since resonant in nature, these pressure variations propagate throughout entire liquid volume. Although ultrasonication is a very efficient method for degassing melts, there is a risk of gas entrapment if ultrasound is applied during solidification. Heating can create unwanted effects during ultrasonication at small supercoolings.

Share

COinS