Date of Award

Summer 2014

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Electrical and Computer Engineering

First Advisor

Kaushik Roy

Committee Chair

Byunghoo Jung

Committee Co-Chair

Mark S. Lundstrom

Committee Member 1

Supriyo Datta

Abstract

Spin-transfer torque magnetic random access memories (STT-MRAMs) based on magnetic tunnel junction (MTJ) has become the leading candidate for future universal memory technology due to its potential for low power, non-volatile, high speed and extremely good endurance. However, conflicting read and write requirements exist in STT-MRAM technology because the current path during read and write operations are the same. Read and write failures of STT-MRAMs are degraded further under process variations. The focus of this dissertation is to optimize the yield of STT- MRAMs under process variations by employing device-circuit-architecture co-design techniques. A devices-to-systems simulation framework was developed to evaluate the effectiveness of the techniques proposed in this dissertation. An optimization methodology for minimizing the failure probability of 1T-1MTJ STT-MRAM bit-cell by proper selection of bit-cell configuration and access transistor sizing is also proposed. A failure mitigation technique using assistsin 1T-1MTJ STT-MRAM bit-cells is also proposed and discussed. Assist techniques proposed in this dissertation to mitigate write failures either increase the amount of current available to switch the MTJ during write or decrease the required current to switch the MTJ. These techniques achieve significant reduction in bit-cell area and write power with minimal impact on bit-cell failure probability and read power. However, the proposed write assist techniques may be less effective in scaled STT-MRAM bit-cells. Furthermore, read failures need to be overcome and hence, read assist techniques are required. It has been experimentally demonstrated that a class of materials called multiferroics can enable manipulation of magnetization using electric fields via magnetoelectric effects. A read assist technique using an MTJ structure incorporating multiferroic materials is proposed and analyzed. It was found that it is very difficult to overcome the fundamental design issues with 1T-1MTJ STT-MRAM due to the two-terminal nature of the MTJ. Hence, multi-terminal MTJ structures consisting of complementary polarized pinned layers are proposed. Analysis of the proposed MTJ structures shows significant improvement in bit-cell failures. Finally, this dissertation explores two system-level applications enabled by STT-MRAMs, and shows that device-circuit-architecture co-design of STT-MRAMs is required to fully exploit its benefits.

Share

COinS