Research Website

jianguomei.com

Keywords

Organic electronics, semiconductor, bis-thienoisatin, thienoisoindigo

Presentation Type

Talk

Research Abstract

Organic field effect transistors (OFETs) offer many advantages compared to traditional inorganic transistors, such as flexibility and solution processability. In this study we design and synthesize two thienoisatin-based organic semiconducting small molecules, then investigate their electronic properties in n-type OFETs. To introduce n-type charge transport, electron-withdrawing dicarbonitrile moieties were installed on thienoisoindigo and bis-thienoisatin molecules, which led to a quinoidal conjugation on thienoisoindigo, while maintaining an aromatic conjugation on the bis-thienoisatin. Following the syntheses, the molecules were characterized to determine highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels via cyclic voltammetry, as well as any potential radical properties.

Session Track

Biotechnology and Biomedical Engineering

Share

COinS
 
Aug 2nd, 12:00 AM

Thienoisatin Oligomers as N-Type Molecular Semiconductors

Organic field effect transistors (OFETs) offer many advantages compared to traditional inorganic transistors, such as flexibility and solution processability. In this study we design and synthesize two thienoisatin-based organic semiconducting small molecules, then investigate their electronic properties in n-type OFETs. To introduce n-type charge transport, electron-withdrawing dicarbonitrile moieties were installed on thienoisoindigo and bis-thienoisatin molecules, which led to a quinoidal conjugation on thienoisoindigo, while maintaining an aromatic conjugation on the bis-thienoisatin. Following the syntheses, the molecules were characterized to determine highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels via cyclic voltammetry, as well as any potential radical properties.

https://docs.lib.purdue.edu/surf/2018/Presentations/125