S. Khlebnikov

Published in:

Physical Review B 77,1 (2008) 014505;


We consider tunneling of vortices across a superconducting film that is both narrow and short (and connected to bulk superconducting leads at the ends). We find that in the superconducting state the resistance, at low values of the temperature (T) and current, does not follow the power-law dependence on T characteristic of longer samples but is exponential in 1/T. The coefficient of 1/T in the exponent depends on the length or, equivalently, the total normal-state resistance of the sample. These conclusions persist in the one-dimensional limit, which is similar to the problem of quantum phase slips in an ultranarrow short wire.


Physics, Condensed Matter

Date of this Version

January 2008



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.