Published in:

Astrophysical Journal 674,1 (2008) 111-121;

Abstract

We use a complete sample of active galactic nuclei (AGN) selected on the basis of relativistically beamed 15 GHz radio flux density (MOJAVE: Monitoring of Jets in AGN with VLBA Experiments) to derive the parent radio luminosity function (RLF) of bright radio-selected blazar cores. We use a maximum likelihood method to fit a beamed RLF to the observed data and thereby recover the parameters of the intrinsic (unbeamed) RLF. We analyze two sub-samples of the MOJAVE sample: the first contains only objects of known FR II class, with a total of 103 sources, and the second subsample adds 24 objects of uncertain FR class for a total of 127 sources. Both subsamples exclude four known FR I radio galaxies and two gigahertz-peaked spectrum sources. We obtain good fits to both subsamples using a single power law intrinsic RLF and a pure density evolution function of the form z(m)expf{-1/2 [(z - z(0)/sigma(2)]}. We find that a previously reported break in the observed MOJAVE RLF actually arises from using incomplete bins (because of the luminosity cutoff) across a steep and strongly evolving RLF, and does not reflect a break in the intrinsic RLF. The derived space density of the parent population of the FR II sources from the MOJAVE sample (with L-15 GHz >= 1.3 x 10(25) W Hz(-1)) is approximately 1.6 x 10(3) Gpc(-3).

Keywords

BL Lacertae objects : general;; galaxies : active;; galaxies : evolution;; galaxies : luminosity function, mass function;; quasars : general;; Astronomy & Astrophysics

Date of this Version

January 2008

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.