Published in:

Applied Physics Letters 92,9 (2008) 092102 1-3;


Top-gated, few-layer graphene field-effect transistors (FETs) fabricated on thermally decomposed semi-insulating 4H-SiC substrates are demonstrated. Physical vapor deposited SiO2 is used as the gate dielectric. A two-dimensional hexagonal arrangement of carbon atoms with the correct lattice vectors, observed by high-resolution scanning tunneling microscopy, confirms the formation of multiple graphene layers on top of the SiC substrates. The observation of n-type and p-type transition further verifies Dirac Fermions' unique transport properties in graphene layers. The measured electron and hole mobilities on these fabricated graphene FETs are as high as 5400 and 4400 cm(2)/V s, respectively, which are much larger than the corresponding values from conventional SiC or silicon. (C) 2008 American Institute of Physics.


Physics, Applied

Date of this Version

January 2008



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.