Published in:

Applied Physics Letters 90,11 (2007) 114110 1-3;

Abstract

Microcantilevers are often deployed in flowing fluids to measure local flow velocities or to detect rapidly the nanomechanical binding of trace quantities of target analytes. The authors investigate the flow-induced mechanics of microcantilevers by deriving a semianalytical theoretical model for the nanoscale deflections of an elastic microcantilever due to a laminar viscous flow incident upon it. Conversely, the model allows for the estimation of the local flow velocities based on measured microcantilever deflection. Careful experiments performed on silicon microcantilevers in flowing nitrogen confirm the theoretical predictions up to a critical flow rate, beyond which unsteady flow-induced vibrations are seen to occur. (c) 2007 American Institute of Physics.

Keywords

Physics, Applied

Date of this Version

January 2007

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.