Published in:

Physical Review B 67,3 (2003) 035207;

Abstract

Photomodulated reflection, optical absorption, and photoluminescence spectroscopies have been used to measure the composition dependence of interband optical transitions in ZnSe1-xTex and ZnS1-xTex alloys. The results reveal entirely different origins of the large band-gap bowing for small and large Te content. On the Te-rich side, the reduction of the band gap is well explained by the band anticrossing interaction between the Se or S localized states and the ZnTe conduction-band states. On the Se- or S-rich side, an interaction between the localized Te states and the degenerate Gamma valence bands of ZnSe or ZnS is responsible for the band-gap reduction and the rapid increase of the spin-orbit splitting with increasing Te concentration. Results of the soft-x-ray emission experiment provide direct proof of the valence-band anticrossing interaction. The band-gap bowing in the entire composition range is accounted for by a linear interpolation between the conduction-band anticrossing and valence-band anticrossing models.

Keywords

nitrogen-induced increase;; electronic-structure;; znse;; znte

Date of this Version

January 2003

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.