Published in:

Astrophysical Journal 620,2 (2005) 905-914;

Abstract

Multiwavelength observations of the black hole X-ray binary XTE J1118+480 have offered abundant spectral and timing information about the source and have thus provided serious challenges to theoretical models. We propose a coupled accretion-jet model to interpret the observations. We model the accretion flow as an outer standard thin accretion disk truncated at a transition radius by an inner hot accretion flow. The accretion flow accounts for the observed UV and X-ray emission, but it substantially underpredicts the radio and infrared fluxes, even after we allow for nonthermal electrons in the hot flow. We attribute the latter components to a jet. We model the jet emission by means of the internal shock scenario, which is widely employed for gamma-ray bursts. In our accretion-jet model of XTE J1118+480, the jet dominates the radio and infrared emission, the thin disk dominates the UV emission, and the hot flow produces most of the X-ray emission. The optical emission has contributions from all three components: jet, thin disk, and hot flow. The model qualitatively accounts for timing features, such as the intriguing positive and negative time lags between the optical and X-ray emission and the wavelength-dependent variability amplitude.

Keywords

accretion, accretion disks;; black hole physics;; ism : jets and outflows;; stars : individual (xte j1118+480);; x-rays : stars;; advection-dominated accretion;; radio/x-ray correlation;; sagittarius a-asterisk;; broad-band spectrum;; x-ray;; optical variability;; multiwavelength observations;; candidate xte-j1118+480;; relativistic jets;; burst afterglows

Date of this Version

January 2005

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.