S. Khlebnikov

Published in:

Physical Review A 71,1 (2005) 013602;


In a uniform ring-shaped one-dimensional superfluid, quantum fluctuations that unwind the order parameter need to transfer momentum to quasiparticles (phonons). We present a detailed calculation of the leading exponential factor governing the rate of such phonon-assisted tunneling in a weakly coupled Bose gas at a low temperature T. We also estimate the preexponent. We find that for small superfluid velocities the T dependence of the rate is given mainly by exp(-c(s)P/2T), where P is the momentum transfer and c(s) is the phonon speed. At low T, this represents a strong suppression of the rate compared to the nonuniform case. As a part of our calculation, we identify a complex instanton whose analytical continuation to suitable real-time segments is real and describes formation and decay of coherent quasiparticle states with nonzero total momenta.


energy electroweak interactions;; interacting bose-gas;; magnus force;; false vacuum;; vortex;; flow;; superconductors;; fluctuations;; phase;; fate

Date of this Version

January 2005



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.