Authors

B. I. Abelev
M. M. Aggarwal
Z. Ahammed
A. V. Alakhverdyants
I. Alekseev
B. D. Anderson
D. Arkhipkin
G. S. Averichev
J. Balewski
L. S. Barnby
S. Baumgart
D. R. Beavis
R. Bellwied
M. J. Betancourt
R. R. Betts
A. Bhasin
A. K. Bhati
H. Bichsel
J. Bielcik
J. Bielcikova
B. Biritz
L. C. Bland
B. E. Bonner
J. Bouchet
E. Braidot
A. V. Brandin
A. Bridgeman
E. Bruna
S. Bueltmann
I. Bunzarov
T. P. Burton
X. Z. Cai
H. Caines
M. C. D. Sanchez
O. Catu
D. Cebra
R. Cendejas
M. C. Cervantes
Z. Chajecki
P. Chaloupka
S. Chattopadhyay
H. F. Chen
J. H. Chen
J. Y. Chen
J. Cheng
M. Cherney
A. Chikanian
K. E. Choi
W. Christie
P. Chung
R. F. Clarke
M. J. M. Codrington
R. Corliss
J. G. Cramer
H. J. Crawford
D. Das
S. Dash
A. D. Leyva
L. C. De Silva
R. R. Debbe
T. G. Dedovich
M. DePhillips
A. A. Derevschikov
R. D. de Souza
L. Didenko
P. Djawotho
S. M. Dogra
X. Dong
J. L. Drachenberg
J. E. Draper
J. C. Dunlop
M. R. D. Mazumdar
L. G. Efimov
E. Elhalhuli
M. Elnimr
J. Engelage
G. Eppley
B. Erazmus
M. Estienne
L. Eun
O. Evdokimov
P. Fachini
R. Fatemi
J. Fedorisin
R. G. Fersch
P. Filip
E. Finch
V. Fine
Y. Fisyak
C. A. Gagliardi
D. R. Gangadharan
M. S. Ganti
E. J. Garcia-Solis
A. Geromitsos
F. Geurts
V. Ghazikhanian
P. Ghosh
Y. N. Gorbunov
A. Gordon
O. Grebenyuk
D. Grosnick
B. Grube
S. M. Guertin
A. Gupta
N. Gupta
W. Guryn
B. Haag
A. Hamed
L. X. Han
J. W. Harris
J. P. Hays-Wehle
M. Heinz
S. Heppelmann
A. Hirsch
E. Hjort
A. M. Hoffman
G. W. Hoffmann
D. J. Hofman
R. S. Hollis
H. Z. Huang
T. J. Humanic
L. Huo
G. Igo
A. Iordanova
P. Jacobs
W. W. Jacobs
P. Jakl
C. Jena
F. Jin
C. L. Jones
P. G. Jones
J. Joseph
E. G. Judd
S. Kabana
K. Kajimoto
K. Kang
J. Kapitan
K. Kauder
D. Keane
A. Kechechyan
D. Kettler
D. P. Kikola
J. Kiryluk
A. Kisiel
S. R. Klein
A. G. Knospe
A. Kocoloski
D. D. Koetke
T. Kollegger
J. Konzer
M. Kopytine
I. Koralt
L. Koroleva
W. Korsch
L. Kotchenda
V. Kouchpil
P. Kravtsov
K. Krueger
M. Krus
L. Kumar
P. Kurnadi
M. A. C. Lamont
J. M. Landgraf
S. LaPointe
J. Lauret
A. Lebedev
R. Lednicky
C. H. Lee
J. H. Lee
W. Leight
M. J. LeVine
C. Li
L. Li
N. Li
W. Li
X. Li
Y. Li
Z. Li
G. Lin
S. J. Lindenbaum
M. A. Lisa
F. Liu
H. Liu
J. Liu
T. Ljubicic
W. J. Llope
R. S. Longacre
W. A. Love
Y. Lu
G. L. Ma
Y. G. Ma
D. P. Mahapatra
R. Majka
O. I. Mall
L. K. Mangotra
R. Manweiler
S. Margetis
C. Markert
H. Masui
H. S. Matis
Y. A. Matulenko
D. McDonald
T. S. McShane
A. Meschanin
R. Milner
N. G. Minaev
S. Mioduszewski
A. Mischke
M. K. Mitrovski
B. Mohanty
M. M. Mondal
B. Morozov
D. A. Morozov
M. G. Munhoz
B. K. Nandi
C. Nattrass
T. K. Nayak
J. M. Nelson
P. K. Netrakanti
M. J. Ng
L. V. Nogach
S. B. Nurushev
G. Odyniec
A. Ogawa
H. Okada
V. Okorokov
D. Olson
M. Pachr
B. S. Page
S. K. Pal
Y. Pandit
Y. Panebratsev
T. Pawlak
T. Peitzmann
V. Perevoztchikov
C. Perkins
W. Peryt
S. C. Phatak
P. Pile
M. Planinic
M. A. Ploskon
J. Pluta
D. Plyku
N. Poljak
A. M. Poskanzer
Bvks Potukuchi
C. B. Powell
D. Prindle
C. Pruneau
N. K. Pruthi
P. R. Pujahari
J. Putschke
R. Raniwala
S. Raniwala
R. L. Ray
R. Redwine
R. Reed
J. M. Rehberg
H. G. Ritter
J. B. Roberts
O. V. Rogachevskiy
J. L. Romero
A. Rose
C. Roy
L. Ruan
R. Sahoo
S. Sakai
I. Sakrejda
T. Sakuma
S. Salur
J. Sandweiss
E. Sangaline
J. Schambach
R. P. Scharenberg
N. Schmitz
T. R. Schuster
J. Seele
J. Seger
I. Selyuzhenkov
P. Seyboth
E. Shahaliev
M. Shao
M. Sharma
S. S. Shi
X. H. Shi
E. P. Sichtermann
F. Simon
R. N. Singaraju
M. J. Skoby
N. Smirnov
P. Sorensen
J. Sowinski
H. M. Spinka
B. Srivastava
T. D. S. Stanislaus
D. Staszak
J. R. Stevens
R. Stock
M. Strikhanov
B. Stringfellow
A. A. P. Suaide
M. C. Suarez
N. L. Subba
M. Sumbera
X. M. Sun
Y. Sun
Z. Sun
B. Surrow
D. N. Svirida
T. J. M. Symons
A. S. de Toledo
J. Takahashi
A. H. Tang
Z. Tang
L. H. Tarini
T. Tarnowsky
D. Thein
J. H. Thomas
J. Tian
A. R. Timmins
S. Timoshenko
D. Tlusty
M. Tokarev
V. N. Tram
S. Trentalange
R. E. Tribble
O. D. Tsai
J. Ulery
T. Ullrich
D. G. Underwood
G. Van Buren
M. van Leeuwen
G. van Nieuwenhuizen
J. A. Vanfossen
R. Varma
G. M. S. Vasconcelos
A. N. Vasiliev
F. Videbaek
Y. P. Viyogi
S. Vokal
S. A. Voloshin
M. Wada
M. Walker
F. Wang
G. Wang
H. Wang
J. S. Wang
Q. Wang
X. L. Wang
Y. Wang
G. Webb
J. C. Webb
G. D. Westfall
C. Whitten
H. Wieman
E. Wingfield
S. W. Wissink
R. Witt
Y. Wu
W. Xie
N. Xu
Q. H. Xu
W. Xu
Y. Xu
Z. Xu
L. Xue
Y. Yang
P. Yepes
K. Yip
I. K. Yoo
Q. Yue
M. Zawisza
H. Zbroszczyk
W. Zhan
S. Zhang
W. M. Zhang
X. P. Zhang
Y. Zhang
Z. P. Zhang
J. Zhao
C. Zhong
J. Zhou
W. Zhou
X. Zhu
Y. H. Zhu
R. Zoulkarneev
Y. Zoulkarneeva

Published in:

Physical Review C 81,4 (2010)

Abstract

We present the results of an elliptic flow, v(2), analysis of Cu + Cu collisions recorded with the solenoidal tracker detector (STAR) at the BNL Relativistic Heavy Ion Collider at root s(NN) = 62.4 and 200 GeV. Elliptic flow as a function of transverse momentum, v(2)(p(T)), is reported for different collision centralities for charged hadrons h(+/-) and strangeness-ontaining hadrons K-S(0), Lambda, Xi, and phi in the midrapidity region vertical bar eta vertical bar < 1.0. Significant reduction in systematic uncertainty of the measurement due to nonflow effects has been achieved by correlating particles at midrapidity, vertical bar eta vertical bar < 1.0, with those at forward rapidity, 2.5 < vertical bar eta vertical bar < 4.0. We also present azimuthal correlations in p + p collisions at root s = 200 GeV to help in estimating nonflow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au + Au collisions at root s(NN) = 200 GeV. We observe that v(2)(p(T)) of strange hadrons has similar scaling properties as were first observed in Au + Au collisions, that is, (i) at low transverse momenta, p(T) < 2 GeV/c, v(2) scales with transverse kinetic energy, m(T) - m, and (ii) at intermediate p(T), 2 < p(T) < 4 GeV/c, it scales with the number of constituent quarks, n(q.) We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of v(2)(p(T)) for K-S(0) and Lambda. Eccentricity scaled v(2) values, v(2)/epsilon, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au + Au collisions, which go further in density, shows that v(2)/epsilon depends on the system size, that is, the number of participants N-part. This indicates that the ideal hydrodynamic limit is not reached in Cu + Cu collisions, presumably because the assumption of thermalization is not attained.

Date of this Version

April 2010

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.