Water oxidation is critically important for the development of energy solutions based on the concept of artificial photosynthesis. In order to gain deeper insight into the mechanism of water oxidation, the catalytic cycle for the first designed water oxidation catalyst, cis,cis-[(bpy)2(H2O)RuIIIORuIII(OH2)(bpy)2]4+ (bpy is 2,2-bipyridine) known as the blue dimer (BD), is monitored in D2O by combined application of stopped flow UV-Vis, electron paramagnetic resonance (EPR) and resonance Raman spectroscopy on freeze quenched samples. The results of these studies show that the rate of formation of BD[4,5] by Ce(IV) oxidation of BD[3,4] (numbers in square bracket denote oxidation states of the ruthenium (Ru) centers) in 0.1 M HNO3, as well as further oxidation of BD[4,5] are slower in D2O by 2.1–2.5. Ce(IV) oxidation of BD[4,5] and reaction with H2O result in formation of an intermediate, BD[3,4]′, which builds up in reaction mixtures on the minute time scale. Combined results under the conditions of these experiments at pH 1 indicate that oxidation of BD[3,4]′ is a rate limiting step in water oxidation with the BD catalyst.


This is a PDF of Moonshiram, D.; Purohit, V.; Concepcion, J.J.; Meyer, T.J.; Pushkar, Y. Mechanism of Catalytic Water Oxidation by the Ruthenium Blue Dimer Catalyst: Comparative Study in D2O versus H2O. Materials 2013, 6, 392-409. DOI: 10.3390/ma6020392, published by MDPI AG, Basel, Switzerland. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).


Ru complexes; catalysis of water oxidation; deuterium isotope effect; time-resolved X-band EPR spectroscopy; time-resolved resonance Raman; UV-Vis stopped flow kinetics

Date of this Version