Date of Award

Summer 2014

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Computer Engineering

First Advisor

John A. Springer

Committee Member 1

Eric J. Dietz

Committee Member 2

Eric T. Matson

Abstract

n the recent times, advances in scientific research related to electric vehicles led to generation of large amounts of data. This data is majorly logger data collected from various sensors in the vehicle. It is predominantly unstructured and non-relational in nature, also called Big Data. Analysis of such data needs a high performance information technology infrastructure that provides superior computational efficiency and storage capacity. It should be scalable to accommodate the growing data and ensure its security over a network. This research proposes an architecture built over Hadoop to effectively support distributed data management over a network for real-time data collection and storage, parallel processing, and faster random read access for information retrieval for decision-making.

Once imported into a database, the system can support efficient analysis and visualization of data as per user needs. These analytics can help understand correlations between data parameters under various circumstances. This system provides scalability to support data accumulation in the future and still perform analytics with less overhead. Overall, these open problems in EV data analytics are taken into consideration and a low-cost architecture for data management is researched.

Share

COinS