Date of Award

January 2015

Degree Type

Thesis

Degree Name

Master of Science in Aeronautics and Astronautics

Department

Aeronautics and Astronautics

First Advisor

WILLIAM E ANDERSON

Committee Member 1

TIMOTHEE L POURPOINT

Committee Member 2

JAMES C SISCO

Abstract

The coupling between unsteady heat release and pressure fluctuations in a combustor leads to the complex phenomenon of combustion instability. Combustion instability can lead to enormous pressure fluctuations and high rates of combustor heat transfer which play a very important role in determining the life and performance of engine. Although high fidelity simulations are starting to yield detailed understanding of the underlying physics of combustion instability, the enormous computing power required restricts their application to a few runs and fairly simple geometries. To overcome this, low order models are being employed for prediction and analysis. Since low order models cannot account for the coupling between heat release and pressure fluctuations, lower-order combustion response models are required. One such attempt is made through the work presented here using a commercial software COMSOL.

Share

COinS