Date of Award

Fall 2013

Degree Type


Degree Name

Doctor of Philosophy (PhD)


Electrical and Computer Engineering

First Advisor

Dimitrios Peroulis

Committee Chair

Dimitrios Peroulis

Committee Member 1

Andrew M. Weiner

Committee Member 2

Dan Jiao

Committee Member 3

Saeed Mohammadi


As the wireless communication systems evolve toward the future generation, intelligence will be the main signature/trend, well known as the concepts of cognitive and software-defined radios which offer ultimate data transmission speed, spectrum access, and user capacity. During this evolution, the human society may experience another round of `information revolution'. However, one of the major bottlenecks of this promotion lies in hardware realization, since all the aforementioned intelligent systems are required to cover a broad frequency range to support multiple communication bands and dissimilar standards. As the essential part of the hardware, power amplifiers (PAs) capable of operating over a wide bandwidth have been identified as the key enabling technology. This dissertation focuses on novel methodologies for designing and realizing broadband high-power PAs, their integration with high-quality-factor (high-Q) tunable filters, and relevant investigations on the reliabilities of these tunable devices. It can be basically divided into three major parts:

1.Broadband High-Efficiency Power Amplifiers. Obtaining high PA efficiency over a wide bandwidth is very challenging, because of the difficulty of performing broadband multi-harmonic matching. However, high efficiency is the critical feature for high-performance PAs due to the ever-increasing demands for environmental friendliness, energy saving, and longer battery life. In this research, novel design methodologies of broad-band highly efficient PAs are proposed, including the first-ever mode-transferring PA theory, novel matching network topology, and wideband reconfigurable PA architecture. These techniques significantly advance the state-of-the-art in terms of bandwidth and efficiency.

2.Co-Design of PAs and High-Q Tunable Filters. When implementing the intelligent communication systems, the conventional approach based on independent RF design philosophy suffers from many inherent defects, since no global optimization is achieved leading to degraded overall performance. An attractive method to solve these difficulties is to co-design critical modules of the transceiver chain. This dissertation presents the first-ever co-design of PAs and tunable filters, in which the redundant inter-module matching is entirely eliminated, leading to minimized size & cost and maximized overall performance. The saved hardware resources can be further transferred to enhance system functionalities. Moreover, we also demonstrate that co-design of PAs and filters can lead to more functionalities/benefits for the wireless systems, e.g. efficient and linear amplification of dual-carrier (or multi-carrier) signals.

3.High-Power/Non-Linear Study on Tunable Devices. High-power limitation/power handling is an everlasting theme of tunable devices, as it determines the operational life and is the threshold for actual industrial applications. Under high-power operation, the high RF voltage can lead to failures like tuners' mechanical deflections and gas discharge in the small air spacing of the cavity. These two mechanisms are studied independently with their instantaneous and long-term effects on the device performance. In addition, an anti-biased topology of electrostatic RF MEMS varactors and tunable filters is proposed and experimentally validated for reducing the non-linear effect induced by bias-noise. These investigations will enlighten the designers on how to avoid and/or minimize the non-ideal effects, eventually leading to longer life cycle and performance sustainability of the tunable devices.