Date of Award

5-2018

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Electrical and Computer Engineering

Committee Chair

Kaushik Roy

Committee Member 1

Peide Ye

Committee Member 2

David B. Janes

Committee Member 3

Jaydeep P. Kulkarni

Abstract

One of the major roadblocks in the continued scaling of standard CMOS technology is its alarmingly high leakage power consumption. Although circuit and system level methods can be employed to reduce power, the fundamental limit in the overall energy efficiency of a system is still rooted in the MOSFET operating principle: an injection of thermally distributed carriers, which does not allow subthreshold swing (SS) lower than 60mV/dec at room temperature. Recently, a new class of steep-slope devices like Tunnel FETs (TFETs) and Negative-Capacitance FETs (NCFETs) have garnered intense interest due to their ability to surpass the 60mV/dec limit on SS at room temperature. The focus of this research is on the simulation and design of TFETs and NCFETs for ultra-low power logic and memory applications. Using full band quantum mechanical model within the Non-Equilibrium Greens Function (NEGF) formalism, source-underlapping has been proposed as an effective technique to lower the SS in GaSb-InAs TFETs. Band-tail states, associated with heavy source doping, are shown to significantly degrade the SS in TFETs from their ideal value. To solve this problem, undoped source GaSb-InAs TFET in an i-i-n configuration is proposed. A detailed circuit-to-system level evaluation is performed to investigate the circuit level metrics of the proposed devices. To demonstrate their potential in a memory application, a 4T gain cell (GC) is proposed, which utilizes the low-leakage and enhanced drain capacitance of TFETs to realize a robust and long retention time GC embedded-DRAMs. The device/circuit/system level evaluation of proposed TFETs demonstrates their potential for low power digital applications. The second part of the thesis focuses on the design space exploration of hysteresis-free Negative Capacitance FETs (NCFETs). A cross-architecture analysis using HfZrOx ferroelectric (FE-HZO) integrated on bulk MOSFET, fully-depleted SOI-FETs, and sub-10nm FinFETs shows that FDSOI and FinFET configurations greatly benefit the NCFET performance due to their undoped body and improved gate-control which enables better capacitance matching with the ferroelectric. A low voltage NC-FinFET operating down to 0.25V is predicted using ultra-thin 3nm FE-HZO. Next, we propose one-transistor ferroelectric NOR type (Fe-NOR) non-volatile memory based on HfZrOx ferroelectric FETs (FeFETs). The enhanced drain-channel coupling in ultrashort channel FeFETs is utilized to dynamically modulate memory window of storage cells thereby resulting in simple erase-, program-and read-operations. The simulation analysis predicts sub-1V program/erase voltages in the proposed Fe-NOR memory array and therefore presents a significantly lower power alternative to conventional FeRAM and NOR flash memories.

Share

COinS