Scattering in Si-nanowires - Where Does it Matter?

Gerhard Klimeck, Purdue University - Main Campus
Mathieu Luiser, Purdue University

Date of this Version



Electron transport is computed in 3nm Si nanowires subject to incoherent scattering from phonons. The electronic structure of the nanowire is represented in an atomistic sp3d5s* tight binding basis. Phonon modes are computed in an atomistic valence force field rather than a continuum deformation potential. Atomistic transport and incoherent scattering are coupled through the non-equilibrium Green function formalism (NEGF) in our new OMEN simulator. Energy loss due to phonon emission is shown to lead to a resistive potential drop in the emitter of the nanowire. Phonon absorption is shown to increase the current in a band-to-band-tunneling configuration.


Electronic Devices and Semiconductor Manufacturing