Understanding Self-Aligned Planar Growth of InAs Nanowires

Yunlong Zi, Purdue University
Kyooho Jung, Purdue University
Dmitri Zakharov, Birck Nanotechnology Center, Purdue University
Chen Yang, Purdue University

Date of this Version



Semiconducting nanowires have attracted lots of attention because of their potential applications. Compared with free-standing nanowires, self-aligned planar nanowires grown epitaxially on the substrate have shown advantageous properties such as being twin defect free and ready for device fabrication, opening potentials for the large-scale device applications. Understanding of planar nanowire growth, which is essential for selective growth of planar vs free-standing wires, is still limited. In this paper, we reported different growth behaviors for self-aligned planar and free-standing InAs nanowires under identical growth conditions. We present a new model based on a revised Gibbs-Thomson equation for the planar nanowires. Using this model, we predicted and successfully confirmed through experiments that higher arsenic vapor partial pressure promoted free-standing InAs nanowire growth. A smaller critical diameter for planar nanowire growth was predicted and achieved experimentally. Successful control and understanding of planar and free-standing nanowire growth established in our work opens up the potential of large-scale integration of self-aligned nanowires for practical device applications.


Nanoscience and Nanotechnology