Low-Frequency Meandering Piezoelectric Vibration Energy Harvester

David F. Berdy, Birck Nanotechnology Center, Purdue University
Pornsak Srisungsitthisunti, Birck Nanotechnology Center, Purdue University
Byunghoo Jung, Purdue University
Xianfan Xu, Birck Nanotechnology Center, Purdue University
Jeff F. Rhoads, Birck Nanotechnology Center, Purdue University
Dimitrios Peroulis, Birck Nanotechnology Center, Purdue University

Date of this Version

5-2012

Citation

Low-frequency meandering piezoelectric vibration energy harvester David F. Berdy; Pornsak Srisungsitthisunti; Byunghoo Jung; Xianfan Xu; Jeffrey F. Rhoads; Dimitrios Peroulis IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control Year: 2012, Volume: 59, Issue: 5 Pages: 846 - 858

Abstract

The design, fabrication, and characterization of a novel low-frequency meandering piezoelectric vibration energy harvester is presented. The energy harvester is designed for sensor node applications where the node targets a width-to-length aspect ratio close to 1: 1 while simultaneously achieving a low resonant frequency. The measured power output and normalized power density are 118 mu W and 5.02 mu W/mm(3)/g(2), respectively, when excited by an acceleration magnitude of 0.2 g at 49.7 Hz. The energy harvester consists of a laser-machined meandering PZT bimorph. Two methods, strain-matched electrode (SME) and strain-matched polarization (SMP), are utilized to mitigate the voltage cancellation caused by having both positive and negative strains in the piezoelectric layer during operation at the meander's first resonant frequency. We have performed finite element analysis and experimentally demonstrated a prototype harvester with a footprint of 27 x 23 mm and a height of 6.5 mm including the tip mass. The device achieves a low resonant frequency while maintaining a form factor suitable for sensor node applications. The meandering design enables energy harvesters to harvest energy from vibration sources with frequencies less than 100 Hz within a compact footprint.

Discipline(s)

Nanoscience and Nanotechnology

 

Share