Transformation optics

Vladimir M. Shalaev, Birck Nanotechnology Center, Purdue University
John Pendry, Imperial College London

Date of this Version

2-2011

Citation

Vladimir M Shalaev and John Pendry Journal of Optics, Volume 13, Number 2

Abstract

Metamaterials are artificial materials with versatile properties that can be tailored to fit almost any practical need and thus go well beyond what can be obtained with `natural' materials. Recent progress in developing optical metamaterials allows unprecedented extreme control over the flow of light at both the nano- and macroscopic scales. The innovative field of transformation optics, which is enabled by metamaterials, inspired researchers to take a fresh look at the very foundations of optics and helped to create a new paradigm for the science of light. Similar to general relativity, where time and space are curved, transformation optics shows that the space for light can also be bent in an almost arbitrary way. Most importantly, the optical space can be designed and engineered, opening up the fascinating possibility of controlling the flow of light with nanometer spatial precision. This new paradigm enables a number of novel optical devices guiding how, using metamaterials, the space for light can be curved in a pre-designed and well-controlled way.

Metamaterials which incorporate the innovative theories of transformation optics are pertinent to the important areas of optical cloaking, optical black holes, super-resolution imaging, and other sci-fi-like devices. One such exciting device is an electromagnetic cloak that can bend light around itself, similar to the flow of water around a stone, making invisible both the cloak and the object hidden inside. Another important application is a flat hyperlens that can magnify the nanometer-scale features of an object that cannot be resolved with conventional optics. This could revolutionize the field of optical imaging, for instance, because such a meta-lens could become a standard add-on tool for microscopes. By enabling nanoscale resolution in optical microscopy, metamaterial-based transformation optics could allow one to literally see extremely small objects with the eye, including biological cells, viruses, and possibly even DNA molecules. Light-concentrating devices, such as the optical black hole, can be used for efficient solar light collection in photovoltaic elements for renewable energy.

With the dramatic advances in micro- and nanofabrication methods, we are presented with the opportunity to control light in a way that was not possible with the materials provided to us by nature. In an artificial pattern of sub-wavelength elements, the propagation of electromagnetic energy can be defined by an equivalent spatial and spectral dispersion of effective dielectric and magnetic properties. These synthetic structures, which can be fabricated with a desired spatial distribution of effective permittivity (r) and permeability μ(r), offer a unique potential to guide and control the flow of electromagnetic energy in such an engineered optical space. No longer are we constrained by the electromagnetic response of natural materials and their chemical compounds. Instead, we can tailor the shape and size of the structural units of the metamaterials, or tune their composition and morphology to provide new functionality.

Discipline(s)

Nanoscience and Nanotechnology

 

Share