Silicon Field Effect Transistors as Dual-Use Sensor-Heater Hybrids

Bobby Reddy Jr., University of Illinois Urbana-Champaign
Oguz H. Elibol, Birck Nanotechnology Center, Purdue University
Pradeep R. Nair, Birck Nanotechnology Center, Purdue University
Brian R. Dorvel, University of Illinois Urbana-Champaign
Felice Butler, University of Illinois Urbana-Champaign
Zahab S. Ahsan, Purdue University; University of Illinois Urbana-Champaign
Donald E. Bergstrom, Birck Nanotechnology Center, Purdue University
Muhammad A. Alam, Birck Nanotechnology Center, Purdue University
Rashid Bashir, University of Illinois at Urbana-Champaign

Date of this Version



Anal. Chem., 2011, 83 (3), pp 1144–1147


We demonstrate the temperature mediated applications of a previously proposed novel localized dielectric heating method on the surface of dual purpose silicon field effect transistor (FET) sensor-heaters and perform modeling and characterization of the underlying mechanisms. The FET's are first shown to operate as electrical sensors via sensitivity to changes in pH in ionic fluids. The same devices are then demonstrated as highly localized heaters via investigation of experimental heating profiles and comparison to simulation results. These results offer further insight into the heating mechanism and help determine the spatial resolution of the technique. Two important biosensor platform applications spanning different temperature ranges are then demonstrated: a localized heat mediated DNA exchange reaction and a method for dense selective functionalization of probe molecules via the heat catalyzed complete desorption and reattachment of chemical functionalization to the transistor surfaces. Our results show that the use of silicon transistors can be extended beyond electrical switching and field-effect sensing to performing localized temperature controlled chemical reactions on the transistor itself.


Nanoscience and Nanotechnology