Undesirable short-channel effects associated with the relentless downscaling of conventional CMOS devices have led to the emergence of new classes of MOSFETs. This has led to new and unprecedented challenges in computational nanoelectronics. The device sizes have already reached the level of tens of nanometers where quantum nature of charge-carriers dominates the device operation and performance. The goal of this paper is to describe an on-going initiative on nanoHUB.org to provide new models, algorithms, approaches, and a comprehensive suite of freely-available web-based simulation tools for nanoscale devices with capabilities not yet available commercially. Three software packages nanoFET, nanoMOS and QuaMC are benchmarked in the simulation of a widely-studied high-performance novel MOSFET device. The impact of quantum mechanical effects on the device properties is elucidated and key design issues are suggested.


NanoHUB, MOSFETs, Quantum effects, Online simulation, NEGF

Date of this Version

March 2007