The yeast homolog of DJ-1, Hsp31, is a multifunctional protein that is involved in several cellular pathways including detoxification of the toxic metabolite methylglyoxal and as a protein deglycase. Prior studies ascribed Hsp31 as a molecular chaperone that can inhibit a-Syn aggregation in vitro and alleviate its toxicity in vivo. It was also shown that Hsp31 inhibits Sup35 aggregate formation in yeast, however, it is unknown if Hsp31 can modulate [PSIC] phenotype and Sup35 prionogenesis. Other small heat shock proteins, Hsp26 and Hsp42 are known to be a part of a synergistic proteostasis network that inhibits Sup35 prion formation and promotes its disaggregation. Here, we establish that Hsp31 inhibits Sup35 [PSIC] prion formation in collaboration with a well-known disaggregase, Hsp104. Hsp31 transiently prevents prion induction but does not suppress induction upon prolonged expression of Sup35 indicating that Hsp31 can be overcome by larger aggregates. In addition, elevated levels of Hsp31 do not cure [PSIC] strains indicating that Hsp31 cannot intervene in a pre-existing prion oligomerization cycle. However, Hsp31 can modulate prion status in cooperation with Hsp104 because it inhibits Sup35 aggregate formation and potentiates [PSIC] prion curing upon overexpression of Hsp104. The absence of Hsp31 reduces [PSIC] prion curing by Hsp104 without influencing its ability to rescue cellular thermotolerance. Hsp31 did not synergize with Hsp42 to modulate the [PSIC] phenotype suggesting that both proteins act on similar stages of the prion cycle. We also showed that Hsp31 physically interacts with Hsp104 and together they prevent Sup35 prion toxicity to greater extent than if they were expressed individually. These results elucidate a mechanism for Hsp31 on prion modulation that suggest it acts at a distinct step early in the Sup35 aggregation process that is different from Hsp104. This is the first demonstration of the modulation of [PSIC] status by the chaperone action of Hsp31. The delineation of Hsp31’s role in the chaperone cycle has implications for understanding the role of the DJ-1 superfamily in controlling misfolded proteins in neurodegenerative disease and cancer.


This is the published version of Aslam K, Tsai CJ, Hazbun TR. The small heat shock protein Hsp31 cooperates with Hsp104 to modulate Sup35 prion aggregation. Prion. 2016 Nov;10(6):444-465. doi: 10.1080/19336896.2016.1234574. PMID: 27690738; PMCID: PMC5161301.


Amyloids, Chaperone, DJ-1, Hsp31, Hsp104, Neurodegenerative diseases, SmallHeat Shock Protein, Sup35, Yeast prion, [PSIC]

Date of this Version