DOI

10.5703/1288284317354

Abstract

Maintenance of roadside ditches is important to avoid localized flooding and premature failure of pavements. Scheduling effective preventative maintenance requires mapping of the ditch profile to identify areas requiring excavation of long-term sediment accumulation. High-resolution, high-quality point clouds collected by mobile LiDAR mapping systems (MLMS) provide an opportunity for effective monitoring of roadside ditches and performing hydrological analyses. This study evaluated the applicability of mobile LiDAR for mapping roadside ditches for slope and drainage analyses. The performance of alternative MLMS units was performed. These MLMS included an unmanned ground vehicle, an unmanned aerial vehicle, a portable backpack system along with its vehicle-mounted version, a medium-grade wheel-based system, and a high-grade wheel-based system. Point cloud from all the MLMS units were in agreement in the vertical direction within the ±3 cm range for solid surfaces, such as paved roads, and ±7 cm range for surfaces with vegetation. The portable backpack system that could be carried by a surveyor or mounted on a vehicle and was the most flexible MLMS. The report concludes that due to flexibility and cost effectiveness of the portable backpack system, it is the preferred platform for mapping roadside ditches, followed by the medium-grade wheel-based system.

Furthermore, a framework for ditch line characterization is proposed and tested using datasets acquired by the medium-grade wheel-based and vehicle-mounted portable systems over a state highway. An existing ground filtering approach is modified to handle variations in point density of mobile LiDAR data. Hydrological analyses, including flow direction and flow accumulation, are applied to extract the drainage network from the digital terrain model (DTM). Cross-sectional/longitudinal profiles of the ditch are automatically extracted from LiDAR data and visualized in 3D point clouds and 2D images. The slope derived from the LiDAR data was found to be very close to highway cross slope design standards of 2% on driving lanes, 4% on shoulders, as well as 6-by-1 slope for ditch lines. Potential flooded regions are identified by detecting areas with no LiDAR return and a recall score of 54% and 92% was achieved by the medium-grade wheel-based and vehicle-mounted portable systems, respectively. Furthermore, a framework for ditch line characterization is proposed and tested using datasets acquired by the medium-grade wheel-based and vehicle-mounted portable systems over a state highway. An existing ground filtering approach is modified to handle variations in point density of mobile LiDAR data. Hydrological analyses, including flow direction and flow accumulation, are applied to extract the drainage network from the digital terrain model (DTM). Cross-sectional/longitudinal profiles of the ditch are automatically extracted from LiDAR data, and visualized in 3D point clouds and 2D images. The slope derived from the LiDAR data was found to be very close to highway cross slope design standards of 2% on driving lanes, 4% on shoulder, as well as 6-by-1 slope for ditch lines. Potential flooded regions are identified by detecting areas with no LiDAR return and a recall score of 54% and 92% was achieved by the medium-grade wheel-based and vehicle-mounted portable systems, respectively.

Report Number

FHWA/IN/JTRP-2021/26

Keywords

LiDAR, mobile mapping system, digital terrain model generation, slope analysis, longitudinal/cross-sectional profiles, roadside ditch, drainage network

SPR Number

4407

Performing Organization

Joint Transportation Research Program

Publisher Place

West Lafayette, IN

Date of this Version

2021

Share

COinS