Conference Year

2021

Keywords

Load-based Testing, Dynamic Performance, Rooftop Unit, Economizer, Integrated Controls

Abstract

Current performance evaluation approaches for commercial packaged air conditioning and heat pump equipment (e.g. AHRI 340/360) utilize full-load steady-state performance tests to estimate system EER (energy efficiency ratio) at different ambient conditions and part-load steady-state tests to estimate an IEER (integrated energy efficiency ratio), a figure of merit for system part-load performance. There are some limitations of the current testing approaches and performance metric estimations, including that they do not consider the effects of: 1) test unit embedded controls and their realistic interactions with the building load; 2) different climate zones and building types; and 3) economizer operation. As a result, the overall performance measurement procedure does not appropriately incentivize the development of better performing controls and economizers. In this paper, an improved testing procedure applied to packaged air conditioning equipment, such as rooftop units (RTUs), that include the effects of embedded controls, economizers, climate, and building type is presented. The testing approach is based on allowing the integrated equipment system and controls to respond naturally to a “virtual building load”. This is termed load-based testing and involves dynamically adjusting the indoor room temperature and humidity setpoints for the psychrometric chamber reconditioning system in a manner that emulates the response of a building’s sensible and latent loads to the test equipment controls. The developed test methodology is demonstrated to evaluate the dynamic performance of a 5-ton variable-speed RTU with an integrated economizer in a psychrometric test facility.

Share

COinS