Conference Year



heat transfer coefficient; lubricant; refrigeration; pool boiling model, bubble parameter


We have been successfully developed a model regarding lubricant effect on individual processes of bubble nucleation, growth and departure period for nucleate pool boiling heat transfer. In this study, three type POE refrigeration lubricants with different refrigerant miscibility (POEA/POEB/POEC), two viscosity grades (ISO68 & 170), three kind of refrigerants (R-134a/R-1234ze/R-134yf), and three different saturated temperatures (10℃/0℃/10℃) are taken into calculation under different heat flux ranging from 10 KW/m2 to 80 KW/m2. Based on this model, a knowledge of chemical structures and physical properties of lubricant and refrigerant is sufficient to get bubble dynamic parameters and predict the boiling performance near metal surface. According to calculating results, several key factors play an important role in pool boiling heat transfer and show drastic influence on bubble parameters and HTC, such as refrigerant type, saturated temperature, heat flux and lubricant concentration. Regarding lubricant chemical structure effect on heat transfer performance, it will be direct related to OCR and following influence on HTC in real evaporator environment. But if keeping same lubricant concentration, different results will appear. Various lubricant structures may provide different volume size, adsorption energy on metal surface and interaction force between refrigerant and lubricant, but these factors sometimes offset each other and lead to only a slight difference in bubble size, contact angle, surface coverage concentration, and HTC. The calculation indicates that the presence of lubricant imposes a negative effect on HTC during waiting period of bubble formation and departure period, but a positive effect on HTC may prevail in bubble growth period. Such two effects compete during the boiling process and could lead increase or impair heat transfer performance at a low lubricant concentration.