Conference Year



Combustion; explosion; fire; flame; 2L refrigerant


An international drive toward sustainability of refrigeration systems will require the adoption of low global warming potential (GWP) refrigerants. Most of these are mildly flammable. Low-GWP refrigerants are generally well characterized in terms of their lower flammability limits, heats of combustion, and flame speeds. However, they are poorly understood in terms of their susceptibility to ignition from sources commonly encountered in residential and industrial settings, including motors, electric arcs, hot surfaces, and open flames. This important gap in understanding is the focus of this project. The primary objective of this project was to perform tests to determine the viability of various ignition sources to ignite A2L refrigerants in air. Fifteen ignition sources were identified and tested. The A2L refrigerants tested were R-32, R-452B, R-1234yf, and R-1234ze. The tests were performed in a windowed stainless steel chamber with dimensions of 0.3 × 0.3 × 0.3 m and a volume of 27 L. Four of the ignition sources resulted in deflagrations or localized flames in the refrigerant-air mixtures. These were: hot wire (800 °C), safety match, lighter flame insertion, and leak impinging on candle, in order of decreasing ignition viability. Among the 15 potential ignition sources, it is remarkable that 11 were unable to ignite any of the mixtures considered here. These were: cigarette insertion, barbeque lighter, plug and receptacle, light switch, hand mixer, cordless drill, friction sparks, hair dryer, toaster, hot plate insertion, and space heater insertion. The inability of so many ignition sources to ignite A2L refrigerants is attributed here to the very long quenching distances of these refrigerants when mixed with air. Another remarkable finding is that these A2L refrigerants can act as either fuels or suppressants. For example, smoldering cigarettes were extinguished every time they encountered a stoichiometric mixture of A2L refrigerant and air.