Conference Year



Transcritical, heat pump, CO2, single-stage expansion, gas-cooler


The concept of “the optimal heat rejection pressure” has attracted wide attention in refrigeration community. Unlike the conventional refrigerants, the heat rejection pressure and temperature of the gas-cooler in the transcritical CO2 cycle are usually decoupled in the transcritical cycle. Besides, there exists an optimal heat rejection pressure under which the maximum cycle efficiency can be achieved. Therefore, the interaction effect between heat rejection pressure and system performance has been studied by many researchers. The heat rejection pressure of the gas-cooler has great impact on the COP of the transcritical CO2 system, but the investigation on the influence factors of the heat rejection pressure is quite rare in open literature. In this paper, the effects of the water inlet temperatures and the water flow rates on the heat rejection pressure of a water-to-water transcritical CO2 refrigeration heat pump with single-stage expansion system have been investigated. Furthermore, the operation parameters and the performance of the system are also evaluated.

2528_presentation.pdf (862 kB)
Experimental Investigation on the Performance Influencing Factors of a Transcritical CO2 System