Conference Year

2014

Keywords

microchannel, condenser, simulation, oil retention, lubricant

Abstract

In HVAC and refrigeration systems, a small portion of the oil circulates with the refrigerant flow through the cycle components, while most of the oil stays in the compressor. The circulating oil can form a fairly homogeneous mixture with the liquid refrigerant, or it can exist as a separate oil-rich film inside the small tubes and headers of a microchannel heat exchanger; the amount of oil held up is affected by the system conditions. The oil retention in the microchannel type condenser is of particular interest as the amount of oil in excess in this component affects the heat transfer capacity and increases the frictional pressure losses. This paper presents a new physics-based model of the oil retention in microchannel-type condensers. The model calculates the local thermodynamic properties in each section for the refrigerant R-410A and Polyester (POE) oil mixture based on the local oil concentration, pressure, temperature, and mass flux. Then the model, which was experimentally validated, predicts the refrigerant-side heat transfer coefficient and pressure drop. The simulation results indicated that the pressure losses increased by over 20% when the oil mass flow rate fraction increased up to 5 weight percent. The augmented mixture viscosity resulted in high frictional pressure drops and shear stress during the two phase flow condensation. The refrigerant side correlations were validated against literature data for in-tube two-phase flow condensation but further investigation is needed for the single-phase annular type flow in microchannel with refrigerant vapor and oil. At low degree of superheat the heat transfer coefficient of the refrigerant and oil mixture was basically unaffected by the oil mass fraction up to 3 weight percent. When the oil mass fraction was higher than 3 weight percent, then the heat transfer capacity of the condenser decreased. At high degree of superheat, the heat transfer coefficient of the oil and refrigerant mixture was penalized when the Oil Mass Fraction (OMF) was higher than 2 weight percent. Further investigation is needed on the suitability and accuracy of the heat transfer coefficients correlations to be adopted with superheated vapor refrigerant and lubricant film in annular flow at the inlet section of the microchannel type condenser.

2279_presentation.pdf (1124 kB)
Modeling of Lubricant Effects in a Microchannel Type Condenser

Share

COinS