Conference Year



thermoelectric, cement composite, energy harvesting, finite volume model


The thermoelectric module (TEM) is a device that integrates multiple thermoelectric (TE) elements to realize the mutual conversion of heat and power. Due to the advantages of no moving parts and flexible expansion, the application of conventional Bi2Te3-based TEM in buildings has attracted the attention of researchers. On the other hand, the TE behavior of hardened cement composites was found by combining conductive additives with cement. Therefore, a new study on cement-based TEM for building energy harvesting and temperature control is proposed. To simulate the performance of cement-based TEM, a three-dimensional heat transfer model considering temperature-dependent TEM characteristics was established. The validity of the model is verified by comparing the results with commercial simulation software and experiments. Different from the existing analytical models and commercial software, the customized model has greater scalability, optimization, and control flexibility. Through parametric studies, the model can guide the design of TEM and the development of TE cement.