Location

Belfast

Keywords

Anaerobic digestion, premature concrete deterioration, exposure classes, chemical attack

Abstract

Anaerobic digesters contain extreme environments that change drastically during the production cycle. Organic material is broken down first into amino and fatty acids, then into volatile fatty acids, ammonia, CO2, H2S and other by-products. These acids and alcohols are converted to acetic acid as well as CO2 and H2, which is then used to create methane. All these biological processes mean that the pH, temperature and type of bacteria vary, creating conditions outside the scope of current standards, such as a concentration of ammonium ions 8 times greater than the upper limit of the XA3 class of highly aggressive chemical attack for concrete in BS EN 206-1:2000. Depending on the source, the concrete may be exposed to heavy metals, antibiotics or surfactants, which are not even considered by current standards.

Anaerobic digestion is a growing industry, with 576 plants currently in the UK using organic wastes for biogas generation and reduction in the volume of waste going to landfill. £160m was invested in the UK sector between 2013 and the start of 2015, $2 billion was invested across Europe in 2015, with an estimated $8 billion European investment by 2024. This means that anaerobic digestion has sizable economic value as well as positive environmental effects. However, as part of maximising these benefits, it is necessary to better understand the chemical and biological attack the concrete that is used to build these digesters undergoes, so that steps can be taken towards limiting premature deterioration. This article will show the current gaps in both knowledge and legislation, with the aim of promoting further research into the aforementioned areas.

Share

COinS
 

Performance of Anaerobic Digestion Systems: A Review

Belfast

Anaerobic digesters contain extreme environments that change drastically during the production cycle. Organic material is broken down first into amino and fatty acids, then into volatile fatty acids, ammonia, CO2, H2S and other by-products. These acids and alcohols are converted to acetic acid as well as CO2 and H2, which is then used to create methane. All these biological processes mean that the pH, temperature and type of bacteria vary, creating conditions outside the scope of current standards, such as a concentration of ammonium ions 8 times greater than the upper limit of the XA3 class of highly aggressive chemical attack for concrete in BS EN 206-1:2000. Depending on the source, the concrete may be exposed to heavy metals, antibiotics or surfactants, which are not even considered by current standards.

Anaerobic digestion is a growing industry, with 576 plants currently in the UK using organic wastes for biogas generation and reduction in the volume of waste going to landfill. £160m was invested in the UK sector between 2013 and the start of 2015, $2 billion was invested across Europe in 2015, with an estimated $8 billion European investment by 2024. This means that anaerobic digestion has sizable economic value as well as positive environmental effects. However, as part of maximising these benefits, it is necessary to better understand the chemical and biological attack the concrete that is used to build these digesters undergoes, so that steps can be taken towards limiting premature deterioration. This article will show the current gaps in both knowledge and legislation, with the aim of promoting further research into the aforementioned areas.