Date of this Version



LiDAR; tree detection; temperate forests; mean shift; stepwise clustering


Precise tree inventory plays a critical role in sustainable forest planting, restoration, and management. LiDAR-based individual tree detection algorithms often focus on finding individual treetops to discern tree positions. However, deliquescent tree forms (broad, flattened crowns) in deciduous forests can make these algorithms ineffective. In this study, we propose a stepwise tree detection approach, by first identifying individual trees using horizontal point density and then analyzing their vertical structure profiles. We first project LiDAR data onto a 2D horizontal plane and apply mean shift clustering to generate candidate tree clusters. Next, we apply a series of structure analyses on the vertical phase, to overcome local variations in crown size and tree density. This study demonstrates that the horizontal point density of LiDAR data provides critical information to locate and isolate individual trees in temperate hardwood plantations with varied densities, while vertical structure profiles can identify spreading branches and reconstruct deliquescent crowns. One challenge of applying mean shift clustering is training a dynamic search kernel to identify trees of different sizes, which usually requires a large number of field measurements. The stepwise approach proposed in this study demonstrated robustness when using a constant kernel in clustering, making it an efficient tool for large-scale analysis. This stepwise approach was designed for quantifying temperate hardwood plantation inventories using relatively low-density airborne LiDAR, and it has potential applications for monitoring large-scale plantation forests. Further research is needed to adapt this method to natural stands with diverse tree ages and structures.


This is the published version of Shao, G.; Fei, S.; Shao, G. A Robust Stepwise Clustering Approach to Detect Individual Trees in Temperate Hardwood Plantations using Airborne LiDAR Data. Remote Sens. 2023, 15, 1241.