In the field of ultrasound diffraction tomography, a cross section of a weakly scattering object is reconstructed from measurements of the sound scattered from the insonified object. This research studies tomographic imaging algorithms that deal only with the sound that is backscattered from the object. The use of the backscattered sound provides higher resolution reconstructions due to the higher spatial frequency information about the object that is obtained from the backscatter. Unfortunately the cost of the high frequency information contained in the backscatter is the loss of low frequency information. Different approaches to compensate for this loss are discussed. An additional benefit of reflection mode tomography is that it has the advantage of requiring only 180° access to the object whereas transmission mode requires 360°. The charter of this research is to explore the effectiveness of current reflection mode diffraction tomography algorithms and to theoretically develop, as well as experimentally verify, new algorithms. Different scanning geometries with different methods of insonification are explored. Many different approaches to the analysis of the problem are taken.

Date of this Version