Abstract

It is possible to exploit the frequency-dependent velocity dispersion inherent to waveguiding structures to deliver spatio-temporally focused energy to a spatial target anywhere along the longitudinal extent of a waveguide. Such focusing of energy may have application to technologies as varied as nerve stimulation or chemical etching. A waveguide signal that effects this focused energy is conceptualized and derived. The spatial location of the target acted upon by the waveguide signal is demonstrated to be dynamically adjustable with a linear filtering step. Optimal parameters for waveguide signal generation are derived in the general case, allowing for application to a cross section of homogeneous waveguides. Performance is also considered in non-ideal, absorptive media. Numerical simulations are presented that indicate agreement with analytic results, and an evaluation of possible reduction to practice is presented.

Comments

Publisher retains content copyright.

Keywords

filtering theory, Numerical analysis, Waveguides

Date of this Version

January 2010

DOI

http://dx.doi.org/10.1109/TSP.2009.2033310

Published in:

IEEE Transactions on Signal Processing 58,3 (2010) 1416-26;

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.