Experimental investigation of a reacting transverse jet in a high pressure oscillating vitiated crossflow

Christopher A Fugger, Purdue University


Staged combustion is one design approach in a gas turbine engine to reduce pollutant emission levels. In axially staged combustion, portions of the air and fuel are injected downstream of a lean premixed low NOx primary combustion zone. The gas residence time at elevated temperatures is decreased resulting in lower thermal NOx, and the reduced oxygen and high temperature vitiated primary zone flow further help to reduce pollutant emissions and quickly complete combustion. One implementation of axially staged combustion is transverse fuel jet injection. An important consideration for staged combustion systems, though, is how the primary and secondary combustion zones can couple through the acoustic resonances of the chamber. These couplings can lead to additional source terms that pump energy into the resonant acoustic field and help sustain the high-amplitude combustor pressure oscillations. An understanding of these couplings is important so that it may be possible to design a secondary combustion system that provides inherent damping to the combustor system. To systematically characterize the coupling of a reacting jet in unsteady crossflow in detail, the effects of an an unsteady pressure flowfield and an unsteady velocity flowfield are separately investigated. An optically accessible resonant combustion chamber was designed and built as part of this work to generate a standing wave unsteady vitiated crossflow at a chamber pressure of 0.9 MPa. The location of transverse jet injection corresponds to one of two locations, where one location is the pressure node and the other location the pressure anti-node of the resonant chamber acoustic mode. The injection location is optically accessible, and the dynamic interactions between the transverse jet flow and the 1st and 2nd axial combustor modes are measured using 10 kHz OH-PLIF and 2D PIV. This document analyzes five test cases: two non-reacting jets and three reacting jets. All cases correspond to jet injection near a pressure node of the 1st axial combustor mode, where the dominant flowfield fluctuations are a time-varying crossflow velocity. For the non-reacting jets, the nominal jet-to-crossflow momentum flux ratio is 19. For the reacting jets, the nominal jet-to-crossflow momentum flux ratio is 6. Two cross sectional planes parallel to the jet injection wall are investigated: 1 and 2.7 jet diameters from the jet injection wall. The combustor crossflow high frequency wall mounted pressure data is given for each test case. The velocity and OH-PLIF data is presented as instantaneous snapshots, time and phase averaged flowfields, modal decompositions using Proper Orthogonal Decomposition and Dynamic Mode Decomposition, and a jet cycle analysis relative to the crossflow acoustic cycle. Analysis of the five test cases shows that the jet cross sectional velocity and OH-PLIF dynamics display a multitude of dynamics. These are often organized into shear layer dynamics and wake dynamics, but are not mutually exclusive. For large unsteady crossflow velocity oscillations at the 1st axial combustor mode, both dynamics show strong organization at the unsteady crossflow frequency. Deciphering these dynamics is complicated by the fact that the ostensible jet response to the time-varying crossflow is a time-varying jet penetration. This drives the jet toward and away from the jet injection wall. These motions are perpendicular to the laser sheet and creates significant out-of-plane motions. The amplitude of crossflow unsteadiness appears to play a role in the sharpness of the wake dynamics. For the non-reacting cases, the wake dynamics are strong and dominant spectral features in the flowfield. For the reacting cases, the wake dynamics are spectrally distinct in the lower amplitude crossflow unsteadiness case, but a large unsteady amplitude crossflow appears to suppress the spectral bands in the frequency range corresponding to wake vortex dynamics.




Anderson, Purdue University.

Subject Area

Aerospace engineering|Acoustics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server