Fractures in anisotropic media

Siyi Shao, Purdue University

Abstract

Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The theory and experimental results in this report demonstrate that the presence of fractures in anisotropic material can be unambiguously interpreted if experimental measurements are made as a function of stress, which eliminates many fracture-generated discrete modes (e.g., interface waves, and leaky guided-modes). Orthogonal fracture networks that are often encountered in field exploration bring in additional challenges for seismic/acoustic data interpretation. An innovative wavefront imaging system with a bi-axial load frame was designed and implemented on orthogonally-fractured samples to determine the effect of fracture networks on elastic wave propagation. The effects of central wave guiding and extra time delays along a fracture intersection were observed in experiments and was analyzed. Interpreting data from media with intersecting fracture sets must account for fracture intersections and the non-uniformity of fracture properties caused by local tectonic conditions or other physical process such as non-uniform fluid distributions within a network and/or chemical alterations.

Degree

Ph.D.

Advisors

Pyrak-Nolte, Purdue University.

Subject Area

Geophysics|Acoustics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS