Contribution to defining a geodetic reference frame for Africa (AFREF): Geodynamics implications

Elifuraha E Saria, Purdue University

Abstract

African Reference Frame (AFREF) is the proposed regional three-dimensional standard frame, which will be used to reference positions and velocities for geodetic sites in Africa and surrounding. This frame will play a crucial role in scientific application for example plate motion and crustal deformation studies, and also in mapping when it involves for example national boundary surveying, remote sensing, GIS, engineering projects and other development programs in Africa. To contribute to the definition of geodetic reference frame for Africa and provide the first continent-wide position/velocity solution for Africa, we processed and analyzed 16 years of GPS and 17 years of DORIS data at 133 GPS sites and 9 DORIS sites continuously operating geodetic sites in Africa and surroundings to describe the present-day kinematics of the Nubian and Somalian plates and constrain relative motions across the East African Rift. We use the resulting horizontal velocities to determine the level of rigidity of Nubia and updated a plate motion model for the East African Rift and revise the counter clockwise rotation of the Victoria plate and clockwise rotation of the Rovuma plate with respect to Nubia. The vertical velocity ranges from -2 to +2 mm/yr, close to their uncertainties with no clear geographical pattern. This study provides the first continent-wide position/velocity solution for Africa, expressed in International Terrestrial Reference Frame (ITRF2008), a contribution to the upcoming African Reference Frame (AFREF). In the next step we used the substantial increase in the geologic, geophysical and geodetic data in Africa to improve our understanding of the rift geometry and the block kinematics of the EAR. We determined the best-fit fault structure of the rift in terms of the locking depth and dip angle and use a block modeling approach where observed velocities are described as the contribution of rigid block rotation and strain accumulation on locked faults. Our results show a better fit with three sub-plates (Victoria, Rovuma and Lwandle) between the major plates Nubia and Somalia. We show that the earthquake slip vectors provide information that is consistent with the GPS velocities and significantly help reduce the uncertainties in plate angular velocity estimates. However, we find that 3.16 My average spreading rates along the Southwest Indian Ridge (SWIR) from MORVEL model are systematically faster than GPS-derived motions across that ridge, possibly reflecting the need to revise the MORVEL outward displacement correction. In the final step, we attempt to understand the hydrological loading in Africa, which may affect our geodetic estimates, particularly the uplift rates. In this work, we analyze 10 years (2002 - 2012) of continuous GPS measurements operating in Africa, and compare with the modeled hydrological loading deformation inferred from the Gravity Recovery and Climate Experiment (GRACE) at the same GPS location and for the same time period. We estimated hydrological loading deformation based on the Equivalent Water Height (EWH) derived from the 10-days interval reprocessed GRACE solution second release (RL02). We took in to account in both GPS and GRACE the systematic errors from atmospheric pressure and non-tidal ocean loading effects and model the Earth as perfect elastic and compute the deformation using appropriate Greens function. We analyze the strength of association between the observation (GPS) and the model (GRACE) in terms of annual amplitude and phase as well as the original data (time-series). We find a good correlation mainly in regions associated with strong seasonal hydrological variations. To improve the correlation between the two solutions, we subtract the GRACE-derived vertical displacement from GPS-observed time series and determine the variance reduction. Our solution shows average variance between the model and the observation reduced to ~40%. (Abstract shortened by UMI.)

Degree

Ph.D.

Advisors

Granger, Purdue University.

Subject Area

Geographic information science|Geophysics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS