Development of a counter rotating vortex pair (CVP) mixer for aerospace applications

Jeongmoon Park, Purdue University


Swirling motions induced by a counter-rotating vortex pair (CVP) provides a mechanism to entrain fluid from the periphery of this structure and mix surrounding fluids with those within the vortex structure. Eventually, the vortices act upon each other transporting molecularly mixed fluid into the core flow. This mechanism has potential to increase efficiency with more complete mixing. Therefore, a mixer is proposed which directly induces counter rotating vortices by a three dimensional geometry. The proposed swirl mixer is designed to induce counter rotating vortices based on the potential flow theory, Milne-Thomson's Circle Theorem and Rankine vortex. Twelve test models are developed during the optimization process. Design factors were examined using a seven-hole pressure probe to investigate velocity vector fields produced by the test models, thereby obtaining an optimum CVP mixer that maximized tangential velocity with uniform axial flow. The optimized design was fabricated from Inconnel 718 using the Direct Metal Laser Sintering (DMLS) technology.




Heister, Purdue University.

Subject Area

Aerospace engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server