Process Characterization and Optimization of Roll-to-roll Plasma Chemical Vapor Deposition for Graphene Growth

Majed A Alrefae, Purdue University

Abstract

The main purpose of this thesis is to develop an efficient and scalable technique for depositing graphene on various flexible substrates. Hence, a custom-built roll-to-roll capacitively coupled plasma chemical vapor system for deposition of graphene on flexible substrates is thoroughly described in this work. Graphene quality on Cu foil has been optimized for a roll-to-roll process using statistical optimization methods. Since graphene quality and uniformity depend on plasma input parameters, such as plasma power, gas pressure, and the gas mixture used, effects of input parameters have been explored to maximize graphene quality, as quantified by Raman spectroscopy using the I D/IG intensity ratio. Furthermore, in situ optical emission spectroscopy has been developed and utilized to determine the effects of several plasma species on graphene growth and quality. OES results demonstrate that graphene quality on Cu foil increases with CH radical emission; however, O and H atoms, C2 and CN radicals, and Ar + ion all negatively correlate to graphene quality. Results aid in developing a conceptual model for a graphene growth mechanism that indicates the adverse impact of ion bombardment on graphene quality in the low-frequency capacitively coupled plasma. However, the existence of active carbon species in the plasma, such as CH radical, accelerates the growth process and leads to moderate-quality graphene deposition on Cu foil at web speeds reaching as high as 1 m/min. Plasma plays a crucial role in heating the foil for graphene deposition in the roll-to-roll process, without the need of a supplemental heating source. Thus, accurate measurement of the translational gas temperature in the plasma is vital, since gas temperature strongly influences the foil temperature distribution, which, in turn, affects graphene growth kinetics. Optical emission spectroscopy (OES) is used to measure the rotational temperatures of N2+ (B-X), CN (B-X) and H2 (d3Πu → a3 Σg+), and to determine accurate translational gas temperatures. Power dissipation in the plasma is also measured to understand gas temperature variation for the experimental input conditions. Thus, the effects of plasma power, gas pressure and the addition of nitrogen, oxygen and methane gases on power dissipation and gas temperature in a hydrogen plasma are assessed. The rotational temperatures measured from the gas species have different values due to the non-equilibrium nature of the plasma. Graphene quality significantly depends on gas pressure since our plasma roll-to-roll system is sustained by a capacitively coupled plasma that operates in two modes, depending on the gas pressure and discharge gap. The modes are identified as alpha and gamma modes, and are sustained by volume ionization and secondary electron emission processes, respectively. Up to our knowledge, the presence of both modes at 80 kHz plasma frequency has not previously been reported. Thus, a detailed characterization of argon plasma is attempted to determine the underlying plasma physics of the low-frequency plasma. Due to strong ion bombardment on the electrodes, the gamma mode coexists with the alpha mode, resulting in a hybrid mode. The voltage square waveform is found to play an important role in sustaining this hybrid mode. The hybrid mode exists at low gas pressures of 5.5 and 9.5 mbar in the plasma set power ranges from 300 to 1100 W. However, the plasma at 13.8 mbar gas pressure transforms from hybrid to gamma mode when the plasma set power is beyond 750 W due to increased secondary electron emission processes. The emission spectra measured from optical emission spectroscopy reveal the presence of non-Ar species in the gamma mode, such as H, CH, and C2. These species are sputtered from the graphite electrodes by ion bombardment to produce secondary electrons that sustain the gamma discharge. Results show the possibility of sustaining the hybrid mode at a low plasma frequency using a tailored waveform. As a results of these plasma characterization tools, we report a continuous and rapid roll-to-roll deposition of thin graphite film on Cu foil. The composition of the Ar/H2/CH4/N2/O2 plasma plays significant role in the successful direct growth of the thin graphite film on copper foil. Optical emission spectroscopy is used to characterize the plasma during graphite synthesis and show that the addition of N 2 enhances the plasma reactivity, and O2 was found to increase the deposition rate of the graphite film. The film was characterized by Raman spectroscopy, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The described large-scale graphite production can produce a graphite-Cu-graphite structure or uniform thin graphite films for thermal management applications in electronics devices. (Abstract shortened by ProQuest.)

Degree

Ph.D.

Advisors

Bilionis, Purdue University.

Subject Area

Mechanical engineering|Nanotechnology|Materials science

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS