Development of Smartphone based Optical Device

Youngkee Jung, Purdue University


Due to the economy of scale, smartphones are becoming more affordable while their computing powers are increasing dramatically every year. Here we propose a ubiquitous and portable instrument for analyte quantitation by utilizing the characteristics of typical smartphone imaging system and specific design of transducers for different applications. Three testbeds included in this work are: quantitative colorimetric analysis, ultra-low radiant flux detection, and portable spectrometer. As a proof-of-principle for each device, 3-D printed cradle and theoretical simulation with MATLAB have been implemented. First example utilizes the native CMOS camera with their respective RGB channel data and perform an analyte quantitation for typical lateral flow devices (LFD). Histogram analysis method has been employed to detect the analyte concentration and calibration results show good correlation between perceived color change and analyte concentration. The second example shows the possibility of using a conventional CMOS camera for pico Watt level photon flux detection. Since most of consumer grade CMOS cameras cannot detect this level of light intensity and their dark current are relatively higher, a new algorithm called NREA (Noise Reduction by Ensemble Averaging) algorithm was developed to effectively reduce the noise level and increase the SNR (signal to noise ratio). This technique is effective for bioanalytical assays that has lower flux intensity such as fluorescence and luminescence. As a proof-of-principle, we tested the device with Pseudomonas fluorescens M3A and achieved a limit of detection of high 10? CFU/ml. In addition to basic schematic of detection model, another experiment with a silicon photomultiplier (SiPM) has been studied for more sensitive light detectability. Based on both the laser experiment and tw bioluminescent experiments, named Pseudomonas fluorescens M3A and NanoLuc, we found that the miniSM based device has a superior ability than the smartphone to detect the low light intensity. Finally, smartphone based spectrometers have been developed and experiments have been performed to demonstrate its availability. Smartphone spectrometers were designed with two kinds of spectrometer functions, absorbance and reflection spectrometer. Based on the diffraction theory, the experimental results were compared with simulation results and demonstrated the feasibility as a spectrometer. Peak locations were calibrated with diode lasers in three wavelengths (405 nm, 532 nm and 635 nm) and specific software application was developed to capture a spectrum. A Biuret test was done to test its feasibility as an absorbance spectrometer. To show the possibility as a reflection spectrometer, the real meat test was done using a standard experimental process of meat freshness analysis.




King, Purdue University.

Subject Area

Mechanical engineering|Optics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server