Secondary instabilities of hypersonic stationary crossflow waves

Joshua B Edelman, Purdue University

Abstract

A sharp, circular 7° half-angle cone was tested in the Boeing/AFOSR Mach-6 Quiet Tunnel at 6° angle of attack. Using a variety of roughness configurations, measurements were made using temperature-sensitive paint (TSP) and fast pressure sensors. High-frequency secondary instabilities of the stationary crossflow waves were detected near the aft end of the cone, from 110° to 163° from the windward ray. At least two frequency bands of the secondary instabilities were measured. The secondary instabilities have high coherence between upstream and downstream sensor pairs. In addition, the amplitudes of the instabilities increase with the addition of roughness elements near the nose of the cone. Two of the measured instabilities were captured over a range of axial Reynolds numbers of about 1 - 2 million, with amplitudes ranging from low to turbulent breakdown. For these instabilities, the wave speed and amplitude growth can be calculated. The wave speeds were all near the edge velocity. Measured growth before breakdown for the two instabilities are between e3 and e4 from background noise levels. The initial linear growth rates for the instabilities are near 50 /m. Simultaneous measurement of two frequency bands of the secondary instabilities was made during a single run. It was found that each mode was spatially confined within a small azimuthal region, and that the regions of peak amplitude for one mode correspond to regions of minimal amplitude for the other.

Degree

M.S.A.A.

Advisors

Schneider, Purdue University.

Subject Area

Aerospace engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS