Error Resilient Video Coding Using Bitstream Syntax And Iterative Microscopy Image Segmentation

Neeraj Jayant Gadgil, Purdue University


There has been a dramatic increase in the amount of video traffic over the Internet in past several years. For applications like real-time video streaming and video conferencing, retransmission of lost packets is often not permitted. Popular video coding standards such as H.26x and VPx make use of spatial-temporal correlations for compression, typically making compressed bitstreams vulnerable to errors. We propose several adaptive spatial-temporal error concealment approaches for subsampling-based multiple description video coding. These adaptive methods are based on motion and mode information extracted from the H.26x video bitstreams. We also present an error resilience method using data duplication in VPx video bitstreams. A recent challenge in image processing is the analysis of biomedical images acquired using optical microscopy. Due to the size and complexity of the images, automated segmentation methods are required to obtain quantitative, objective and reproducible measurements of biological entities. In this thesis, we present two techniques for microscopy image analysis. Our first method, “Jelly Filling” is intended to provide 3D segmentation of biological images that contain incompleteness in dye labeling. Intuitively, this method is based on filling disjoint regions of an image with jelly-like fluids to iteratively refine segments that represent separable biological entities. Our second method selectively uses a shape-based function optimization approach and a 2D marked point process simulation, to quantify nuclei by their locations and sizes. Experimental results exhibit that our proposed methods are effective in addressing the aforementioned challenges.




Delp, Purdue University.

Subject Area

Electrical engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server