Microscale radiometer based on the Knudsen thermal force

Andrew D Strongrich, Purdue University


Radiometric phenomena arise in non-isothermal rarefied gas flows for which the molecular mean-free path is approximately equal to the characteristic scale of the temperature gradient. The non-equilibrium nature of these flows results in thermal stresses which are capable of exerting forces and moments on immersed structures. When the stresses are established between unequally heated bodies the forces are referred to as Knudsen thermal forces. This work presents the design, fabrication, and characterization of a novel in-plane microscale radiometer capable of both producing and resolving Knudsen forces in low pressures. The current work differs from previous implementations in that both capacitance and temperature measurements are acquired simultaneously, extending permissible measurement range by up to 3 pressure decades. Sensitivity to ambient pressure, temperature gradient, as well as gas composition is demonstrated, illustrating the mechanism's versatility in measuring various macroscopic fluid properties. For constant input power force output is shown to vary non-monotonically with ambient pressure, having peak magnitude at a Knudsen number of approximately unity. Using thermal microscopy, results are presented in terms of a non-dimensional force coefficient, showing output enhancement of over 7 times at peak magnitude compared to existing out-of-plane cantilevered configurations.




Alexeenko, Purdue University.

Subject Area

Aerospace engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server