Report Number

2010-004

Abstract

We consider a system in which an order is placed every T periods to bring the inventory position up to the base stock S. We accept demand until the inventory position reaches a sales rejection threshold M. Our objective is to find the optimal values of S and M which minimize the long-run average cost per period. We establish the stationary distribution of our system and develop structural properties of the optimal solution that facilitate computation. In particular, we show that in an optimal solution, the optimal value of M is non-negative under some reasonable conditions. Hence, in our model a mixture of backorders and lost sales may occur. Additionally, we compare our system against traditional systems in which demand during stockouts is either fully backordered or lost.

Keywords

stochastic inventory models, base stock systems, backorders, lost sales

Date of this Version

1-1-2010

Share

COinS