Zen and the Digital Collection Librarian

James A. Bradley

Ball State University, Jabradley2@bsu.edu

Follow this and additional works at: http://docs.lib.purdue.edu/atg

Part of the Library and Information Science Commons

Recommended Citation
DOI: https://doi.org/10.7771/2380-176X.5229

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
"The container tends to shape the contained."

It sounds a bit like an eastern proverb — and, to be completely honest, I’m not certain that I haven’t unconsciously borrowed the phrase from one of the many poorly-dubbed Kung Fu films I indulge in from time to time.

Whatever the origins, the concept is simple: Flexible matter immediately assumes the shape of whatever you pour it into; and even a somewhat rigid object will, over time, succumb to the contours of its packaging. By the same token, a rigid item will simply break if forced into a container that is too foreign or restrictive.

I’ve found this maxim to be a true and useful analogy in the planning of digital collections. Bringing an existing “real world” collection, and its accompanying metadata, across the digital threshold can sometimes be a frustrating process — full of promise, but also compromise. The flexibility of both the container and the contained must be taken into consideration; however, it is the collections librarian who must remain the most willowy — recognizing the shattering points of both and finding an appropriate fit.

Such was the case of the Ball State University Architecture Image Collection.

The challenge to Ball State University Library’s new Digital Initiatives program was to migrate the visual resources of the Architecture Library into a single online environment that would facilitate remote access, advanced searching capabilities, and image delivery at a resolution suitable for research and classroom instruction within the College of Architecture and Planning (CAP).

The first step in the conversion process was to assess and gather the characteristics of the materials to be digitized:

- Approximately 120,000 35mm slides
- Local call number for access purposes
- Group level MARC records that gather individual slides according to location or site.

The next step was to consider the characteristics of the desired online collection:

- Slides must be scanned and stored in accordance with archival standards.
- Derivative images must be created for online delivery.
- The “front end” metadata must be user-friendly, containing data fields and categorizations that CAP students and faculty would recognize.
- The “back end” metadata must conform to internationally recognized metadata standards and be suitable for Open Archives Initiative (OAI) harvesters.
- The online collection must be made available as widely as copyright will allow — so that outside educators and the general public may also utilize the collection.

With the above survey of existing materials, and list of collection goals we began our planning the collection and drafting workflows.

Content Management

The first task of any digital collection is to determine if one should develop or purchase a content management system (CMS) to house it. Fortunately, this decision had already been made: prior to the beginning of this project, Ball State University Libraries had purchased CONTENTdm to form the base of all collections in our Digital Media Repository.

As with any turnkey system, CONTENTdm has the disadvantage of already being a fully formed container. Homegrown systems are far more advantageous in this regard, and can be developed with a specific collection in mind for a tailor-made fit. This being said, however, CONTENTdm is a surprisingly flexible container, and has the added advantage of being ready to go practically out of the box.

Metadata

With our CMS in hand, we set about determining how to utilize the existing metadata.

As previously stated, the 35mm slides were already cataloged into group-level MARC records, with the title and call number of each individual image stored in the 505 field [See sample — Appendix A]. So, some programming was developed to extract the data from...

Appendix A — Sample group-level MARC record.

Art Institute of Chicago (Chicago, Ill.). Grant Park Garden [slide]

000	: gm5 n FBU	
007	: ets iij jk	
008	: 910522s1987 waumnn 6sneng d	
040	: iArch	
049	: IBSO	
110	2 : Skidmore, Owings & Merrill.	
245	10 : Art Institute of Chicago (Chicago, Ill.).	p Grant Park Garden[slide].
300	: slides/bcol.	
440	0 : Place as art : pocket parks and gardens in the city (Series)	
5003	: 1977	
596	: 2	
650	0 : Gardens.	
650	0 : Urban parks.	
650	0 : Landscape architecture.	
856	40 : [http://libb.bsu.edu/xdnlink.php?ckey=700011&col=BSU_Arch SlidesC.php#]Click to view available images of this site or work.	

Endnotes

the group-level MARC record and use it to create the basis of individual records in a Microsoft Access database (repeating group level information as necessary for each individual item). Additional programming was developed to draw inferences and to embellish upon the existing data. For instance, once the site “Chicago, Ill.” is known, other location thresholds can be created as well: Illinois, Midwest States, United States, North America, etc.

Naturally, even the best programming is not perfect. Portions of this conversion must be assisted by cataloging librarians, and quality assurance testing is an absolute necessity; however, quite a bit of the work can be automated. Thus, through automated scripting and human-intervention, the MARC data can be crosswalked and expanded into data fields that are user friendly, and labeled specifically with architecture researchers in mind [See sample — Appendix B].

The resulting Access database with “front end” user-friendly data fields will be used to bulk-upload into our CMS once the scanned images are prepared. Once the data is in the CMS, the “front end” metadata set will be tied to a “back end” metadata set of qualified Dublin Core elements. In this manner, our “front end” users may utilize the collection with the highly granular and user-friendly data fields, while simultaneously, our collection will offer OAI compatible Dublin Core records to “back end” users through a wide variety of metadata harvesters, and search engines.

Digital Images

To prepare our images, the architecture librarians first pull all the individual slides associated with a given MARC group record. The slides are bundled and sent to the library’s Digitization Center, where they are scanned into high-resolution uncompressed TIFF images and saved with the individual call number as the filename so they can be easily matched to the metadata record. Automatic scripting creates a derivative JPEG from the archived TIFF, suitable for Internet delivery and classroom projection.

Maintaining the copyright protections of the images was perhaps the most difficult obstacle to overcome in building this collection. Largely, the digitized images fell into one of three copyright "levels":

1. Public: These images are public domain images, orphaned works, and/or Ball State University owns the copyright and wishes to share the image with the public at large. Anyone, anywhere, may access these images.

2. Student: Ball State University has paid a licensing fee for the use of these images within the Ball State community, or Ball State University owns the copyright but wishes to restrict access. These images may only be viewed by students, faculty, and staff.

3. Faculty: Ball State University claims no rights to these images, and they may only be utilized by faculty during face-to-face instruction in accordance with the Teach Act. To insure that fair use provisions are not violated, use of these images is monitored, and excessive use spurs either the securing of licensing for the image,
or (as a final alternative) the removal of the image from the collection.

Our CMS, CONTENTdm, does possess some internal methods to restrict access on a collection-level or item-level basis; however, it does not allow for multiple levels of access to a single collection. Complying with these copyright provisions was not optional, it simply must occur. If we could not find a way to stretch the container, the collection would have to be divided into multiple smaller collections.

Fortunately, after much head scratching, we developed an architecture that would allow a unified CONTENTdm collection to offer materials to a variety of user types while still protecting image copyright. The solution presented itself when our research determined that the sharing of thumbnail images within an Internet search engine is perfectly legal (see Kelly v. Arriba Soft, a.k.a. Ditto.com).

Thus, we could load the metadata into CONTENTdm alongside a thumbnail-sized image. The CONTENTdm record would then link out to the larger JPEG images which would reside on a separate file server, and access would be approved or refused based on login using the server controls. So, regardless of copyright, all users may access the metadata record and the thumbnail image; however, only certain types of users can follow the link to the full size image.

Workflow And Personnel

The workflow of the collection (See Diagram — Appendix C) is fairly straightforward once you understand the reasoning behind the parts.

The Metadata Team works to extract data from the group-level MARC files, embellish it, and then export the final result to a tab-delimited flat file for bulk loading into the CMS. Likewise, the Digitization Team scans the original slide and archives the TIFF version. Automatic scripting takes over from there to produce thumbnail and medium resolution JPG derivatives. Finally, the local call number acts as a data point that allows for the union of metadata record to the correct scanned image during the upload process.

The ability to have metadata production proceeding simultaneously, and independently of image digitization has been crucial to the success of this project. Compartmentalizing the work has allowed us to create our digital collections with very few new personnel. Student employees handle most of the scanning, and existing personnel from various departments (Cataloging and Metadata, Physical Processing, Archives & Special Collections, and Library Information Technology Services) have been drawn in according to need, specialty, and ability to complete portions of the workflow.

Additionally, the ability to automate many tasks within the process has allowed us to move forward with surprising speed. We are eighteen months into the project and our current collection is nearing 40,000 records — an average of five hundred records per week.

Conclusion

We at Ball State University Libraries invite you to view our Architecture Image Collection, and any of the other collections residing in our Digital Media Repository (http://libx.bsu.edu). Each collection has brought with it a unique set of challenges and obstacles to be overcome.

When creating a digital collection, sometimes, you can bend the object. On other occasions, you can stretch the container. Most often, however, you will find you need to do a little bit of both.

Rumors

from page 26

chapters choc-a-block full of important legal information. It’s on my beside table to read. Check it out!

Speaking of which, Audrey Fenner has edited a book, Integrating Print and Digital Resources in Library Collections (The Acquisitions Librarian, no. 35/36, 2006). See our review, this issue p.54.

Speaking of reading, have been fascinated by the recent book, The Man Time Forgot, A Tale of Genius, Betrayal, and the Creation of Time magazine by Isaiah Wilner (HarperCollins, 2006). It’s all about Briton Hadden, the man who with Henry R. Luce, began Time magazine when they were students at Yale. Hadden died at the age of 31.

And this news from the alert Chuck Ha- maker <cahamake@email.uncc.edu> — From Times online (15 February 2007) and an