November 2013

Bet You Missed It -- Press Clippings -- In the News - - Carefully Selected by Your Crack Team of News Sleuths

Pamela M. Rose
University of Buffalo, pmrose@acsu.buffalo.edu

Follow this and additional works at: http://docs.lib.purdue.edu/atg

Recommended Citation
DOI: https://doi.org/10.7771/2380-176X.4047

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
like fund code, location code, and grid or branch
copy information can be output in the electronic
order. Some systems’ electronic orders require
an ISBN, and some do not. Some allow the
library to pick the ISBN to be transmitted in the
order, but most just transmit whichever ISBN
is listed first in the bibliographic record. Each
system records and outputs vendor account in-
formation in different ways, some requiring
multiple vendor records for the same vendor
and the library orders on multiple account numbers.
Thus, it’s important to review the data elements
output in an electronic order and confirm that
they meet your requirements.

With electronic invoicing, the library faces
similar questions and changes. The new sys-
tem allows for invoicing data to be embed-
ded in a MARC bibliographic record. Invoic-
ing may be moving from one standard used by
the former system, such as X12, to another, such
as EDIFACT. What is the invoicing matching
point that the new system is expecting to find in
the electronic invoice? Is that point solely a
system-proprietary number like a PO number
or line item number, or can it be a number sup-
plied by the material vendor? For libraries
with large approval plans, where there is no pre-
existing purchase order in the library system, an
ability to accept book vendor-supplied invoic-
ing matching points is critical.

For MARC records, a more complex set of
questions emerge, due to the multiple ways that
libraries use MARC records. Can the system
accept pre-order or selection records generated
from the book vendor’s online database? If so,
what are the duplication control routines, and
how complicated is it to finish off the order and
transmit back to the book vendor? If the library
chooses to order on the book vendor’s online
system, can the library’s system accept elec-
tronic order confirmation records, which con-
struct a copy of the bibliographic and order data
in their local system? For cataloging records,
what is the overlay matching point? The biggest
area of variability we see is what sort of order,
invoice, and barcode data can be embedded in
the MARC record. If the library’s system al-
lows for the acceptance of order or invoice data
in a MARC record, are the field mappings for the
data prescribed by the vendors, or
flexible, to be agreed upon by the library and
vendor? If the library receives both bibli-
ographic data and invoicing data from the
materials vendor, will the new system be ex-
pecting one integrated file or two separate files?

Finally, the mechanics of file moving and
loading can vary greatly from system to sys-
tem. Are file delivery and pickup processes
automated or manual? Which library depart-
ment is in control of file exchanges? Technical
Services or Systems? How complicated is the
setup process, and how well-documented by the
systems and vendors? What is the testing process?
It’s been our experience that some libraries can set up electronic ordering in
a matter of minutes, output a test file or two,
and then go into regular production mode. For
others, it can take several months, de-
pending on the complexity of the arrangement
and the maturity of the systems and materials
vendors’ capabilities.

One of the most critical steps is analyzing
any existing custom programming, and whether
it will transition to the new system or not. Many
libraries developed internal programs to over-
come shortcomings of older systems, or to en-
force workflow efficiencies. Some libraries
have grafted electronic ordering programs onto
their system. Others have created custom pro-
gramming to move payment voucher data from
their library system to their parent body’s ac-
counting system. With the system migration,
chances are these custom tools will either be-
come obsolete or require significant rewriting.

As a library enters a transition period be-
tween old system and new, there are a number
of actions they can undertake to minimize tran-
sition woes. We recommend that libraries mini-
imize the number of open monographic orders
they’ll have to migrate between systems.
Migrating and setting up serial check-in records
tends to be a major project, so the fewer the open
monographic orders to have to deal with, the
better. We see libraries scheduling transitions
at different points in their fiscal years. For li-
braries which transition in the middle of fiscal
years, and have financial data split between their
old and new systems, the book vendor’s online
system may provide expenditure and other fi-
nancial reports to help span the gap.

Most libraries have a transition blackout period
lasting from a week to two or three months, where
routine technical services work is difficult or im-
possible. During that time, the library must deter-
mine whether they will suspend various tasks or
create workarounds. Book vendors can usually
suspend approval plans or other shipments for some
period of time, as long as we have reasonable
notice. If the library opts to continue receiving ship-
ments, but cannot receive items on the new system
during the blackout period, then additional storage
locations or shelves may be needed within the li-
rary. If a library will not be able to load catalog-

ing records or electronic invoicing for a period
of time, then they may need to arrange with the book
vendor to store the files longer than normal, or else
pick up the files and store them locally until they
are loaded. If a library will be unable to pay
invoices for some period of time, it’s imperative to
notify the materials vendor; some libraries make
prepayments or set up small deposit accounts to
cover the transition period.

Looking ahead, once the library is up and
running on the new system, if desired
workflows are not supported, then the library
can work with the systems and materials ven-
dors to try to develop system enhancements.
Both systems and materials vendors typically
have long development lists which must be
prioritized, but we’re always seeking to make
our systems work better for our customers.

The selection and implementation of a new
integrated library system is one of the larger,
more expensive decisions that libraries face. In
formulating RFPs, and then selecting and im-
plementing the new system, we hope you will take
advantage of the library’s primary materials
vendors as a source of information on the
system’s proven capabilities and as a gateway
to other libraries who have faced similar ques-
tions. We promise to be close at hand.
COMMUTER PHYSICS
by Pamela M. Rose (University at Buffalo)

tired Amherst college physics professor Robert Romer and artist Bruce Aller teamed up to post physics problems on buses to stimulate the public mind. Problems included such puzzles as whether the water level will go up or down if a weight is thrown out of a boat, or if a box of flying bees weighs less than one with the bees at rest. Suggestions for home experiments can be found at www.amherst.edu/~physics/physicspanda. The program is so successful that readers are offering their own puzzles such as whether jumping up and down will reduce your chances of injury in a falling elevator.


VIRTUAL PHOENIX
by Pamela M. Rose (University at Buffalo)

Will the dream of instant access to every book in the world be realized? That’s the ambition of the Alexandria Library Scholars Collective, who hope to replicate the ancient wonder in a digital world by making virtually all of the world’s books available at a click of a mouse. The ambitious initiative has scanned about 100,000 pages of the Alexandria Library’s collections, and has been promised access to one million books now being scanned at Carnegie Mellon as well as a whole library of crumbling medieval manuscripts in a monastery in Timbuktu in Mali, Africa. The CyberBook Plus software, designed by an American artist, includes colorful virtual auditoriums, classrooms and offices with lamps where scholars can exchange information, teach classes or hold office hours. The rooms and lecture halls can easily be customized for the universities that choose to use the library’s software for remote learning.


SEMANTICS OF SCIENCE
by Pamela M. Rose (University at Buffalo)

Although preprint archives and search engines like Google have allowed scientists unprecedented connectivity and ability to locate research areas, the Web is severely limited when it comes to the integration of information from multiple sites or nontextual information. The future of e-Science will depend on new Web technologies like the “Semantic Web” which is being designed to improve communications between different field terminologies, to extend the interoperability of databases, to provide tools for interacting with multimedia collections, and to provide support of “agent-based” computing in which people and machines work more interactively. Essentially, it unites information across disciplines through metadescription to connect disparate research areas. The success of the Semantic Web will depend heavily on open and unrestricted access to both scientific research and computer science programming.


UPSIDE HAS NO DOWNSIDE
by Pamela M. Rose (University at Buffalo)

Leaders in the life sciences have issued a set of rules for the sharing of data and research material in a report issued by the National Academy of Sciences. Their “Universal Principle of Sharing Integral Data Expediency,” or UPSIDE, is designed to get “universal adherence” so that any scientist has ready access to data and materials needed to “verify or replicate” a published claim. Questions about enforcement still remain, however, editors of key journals might have the best leverage.


Biz of Acq — Acquiring Pictures in the Digital Age

License Issues in the Acquisition of Slides, Digital Images, and Digital Reproduction Rights for Two Digital Image Projects at Western Michigan University

by Miranda Howard Haddock (Visual Resources Librarian, Western Michigan University)

Column Editor: Michelle Flinchbaugh (Acquisitions Librarian, Albin O. Kuhn Library, UMBC, 1000 Hilltop Circle, Baltimore, MD 21250; Phone: 410-455-6754; Fax: 410-455-1598) <flinchba@umbc.edu>

Column Editor’s Note: “Try to fill any requests for slides with digital slides,” my library director told me. But librarians in medium-sized libraries, such as me, do not have an expert such as Miranda Howard Haddock, Visual Resources Librarian, on hand. In this article, Miranda shares her experiences in developing collections of digital slides at Western Michigan University. Miranda’s article will help me and other librarians get started purchasing digital images. — MF

Introduction
Advances taking place in digital imaging technology and projection are changing the way libraries acquire images for classroom and research use. In the teaching of the visual arts, and other subjects where material culture is at the heart of the discipline, pictures of objects are used as surrogates for an actual artifact. Pictorial surrogates allow instructors to talk about a work of material culture without having the actual piece present. Pictures and their reproductions allow copies of the works to be distributed to a wide audience either by printing reproduction technologies or projection. In the last decades of the nineteenth century and the first half of the twentieth century, lantern slides carried black and white or hand colored surrogates images were projected in classrooms. Lantern slides were available from publishers or made by lecturers themselves through copy photography. Projected slides allowed images to be distributed to more than one person at a time. Projection of images for educational use was updated when color 35mm slides films improved. During the middle decades of the twentieth century the practical materials, manageable size, and reasonable price made using and collecting slides sensible. 35mm slides were acquired in the same way as lantern slides. Copies of works were made and distributed within the educational community under the umbrella of fair use. Rather than dispose of the images after one use, these slides became the mainstay of art and art history slide collections and visual resources libraries.

Enter the advent of the digital imaging and continued on page 90

<http://www.against-the-grain.com> 89